Yukun Liu
Yong Yue

Liwei Gui

UNIX Operating System

The Development Tutorial
via UNIX Kernel Services

UNIX IR1E &S
k#E UNIX AZARSRIF EZIEE (3232hR)

ﬁfb R i
HIGHER EDUCATION PRESS

Yukun Liu

Yong Yue

Liwei Guo

UNIX Operating System

The Development Tutorial via UNIX Kernel Services

UNIXBRIERG R —NERBBRIERS, Iz N AT oI RI7 RS R
ARBEP, XPL@ih. REHWNBTIUNXBRERGHNFLZANETERN. AZ
AR5, shell! THEHBKMINA, ATBREENNS: FRURMAFE. XER
iR, UNIXMIEZBR S . UNIX8Y6 < BB R REFUINXE W& ER,

AP TEASERBITEN T LHRENSERANENBFZSER, Bl
BFRITRZ%,

Yukun Liu (XE3#) FIERHERAZTTEN RBIER, KENEEHAENA
HEGREIHRE,

Yong Yue (E£58) RENBEHEAZHE, NETERRFAEE, HEHH
FERRARITER.

Liwei Guo (#B3rks) JIIERHRAZHEIR, BEEREESIR#RERK,

Xi#iE. UNIX B1ERS% AZEBRE Shell HEHIEN

SR XK. HHEMN

BN 978-7-04-031907-1

Not for sale outside Mainland China
{MIRPEAMIXEES

EEHE BRI SSpringer AT S ELAR
BINE1TISBN: 978-3-642-20431-9

TE 69.00 7T

http://academic.hep.com.cn

P TR T TE R —

UNIX Operating System
UNIX K& REAR

Liu « Yue « Guo

Yukun Liu
Yong Yue
Liwei Guo

UNIX Operating System

The Development Tutorial via UNIX
Kernel Services

UNIX ##1ER %
{3 UNIX AZ RS 10T & 360 o)

UNIX Caozuo Xitong
Yiju UNIX Neihe Fuwu de Kaifa Zhinan

With 132 figures

ﬁ’ﬁ; fHA e mp-tm

HIGHER EDUCATION PRESS BEWING

kg —dbat: EEHEE HiE, 2011.4
ISBN 978 -7 -04 -031907 -1

[. QU 0. OX|-+ @& -+ 1.

Authors

Associate Professor Yukun Liu

College of Information Science and Technology
Hebei University of Science and Technology

Hebei 050018 , China
Institute for Research in Applicable

Computing, University of Bedfordshire

E-mail ; lyklucky @ hebust. edu. ¢n

Professor Liwei Guo

Professor Yong Yue

Faculty of Creative Arts, Technologies
and Science

University of Bedfordshire

Park Square Luton Bedfordshire
LUI 3JU, United Kingdom

E-mail ; yong. yue@ beds. ac. uk

College of Information Science and Technology

Hebei University of Science and Technology
Hebei 0560018 , China

E-mail ; guoliwei@ hebust. edu. en

EBER®E (CIP) #iE

UNIX #EREE: Hdl UNIX NAZIIR S5 T AR R =
UNIX Operating System; The Development Tutorial
via UNIX Kernel Services: 3 / X| L4, FE5, %

UNIX #:fE &4 - 93¢ V. DTP316. 81
riE ROAS PRl CIP $idiid% 7 (2011) 25 042816 5

ek RERE HFaox

HmEigit

@

ik A HEEE %

KR %iE
HR%1T
i
HP I 4 B
2
B Rl
F A
I S
F OOH

o A AL
AL ST PR IX FESN AT 4 5
100120

HEwEEBRITARAF
e BT R A R 2

787 x1092 1/16
24.25
660 000

ALk
BHEBIE
2 b1l

F 1T

HEHE
[S/
X
£ M0

010 -58581118

400 - 810 - 0598

http ://www. hep. edu. ¢n
http :#/www. hep. com. cn

http ://www. landraco. com

- http://www. landraco. com. ¢n

http : 7/ www. widedu. com
2011 44 HA5 1 R
2011 44 A 55 1 I ETk)
69.00 JC

ACTUNAT SR OT B 5T BT A)

AR #RwR
WS 31907 -00

Sales only inside the mainland of China

T 20 O A] S 1K AR e 4

(AR [Al e DX 5)

Yukun Liu
Yong Yue
Liweil Guo

UNIX Operating System

The Development Tutorial via UNIX Kernel Services

Preface

This book presents UNIX as a practical case of operating systems for the
reader to understand and master deeply and tangibly the theory and algo-
rithms in operating systems. It gives discussions and studies on the hierarchi-
cal structure, principles, applications, shells, development, and management
of the UNIX operation system multi-dimensionally, systematically and from
the elementary to the profound. It brings readers to go into the inside of
the UNIX operating system and lets them understand clearly what and how
UNIX operating system functions.

Subject Matter

This book consists of 11 chapters. The first two chapters discuss the back-
ground of UNIX operating system (OS), and give a whole picture of what
UNIX OS looks like and the evolution of UNIX.

Chapter 3 focuses on the editors that will be used frequently by UNIX
users, no matter who are regular users or seasoned programrmers.

Chapters 4, 5, 6, and 7 concentrate on the services of the UNIX kernel.
Chapter 4 zooms in the process management, which is usually hidden from
the final users. Chapter 5 is to discuss the UNIX memory management, which
cooperates with the process management to accomplish the processes’ con-
currently running. Chapter 6 introduces the UNIX file management, which is
involved almost in every service that the UNIX kernel provides to the users.
Chapter 6, however, for UNIX users, is fundamentally useful to understand
how UNIX works. Chapter 7 explores UNIX I/0O, I/O redirection and piping.
As UNIX treats its hardware devices as special files, this mechanism brings
a whole different concept on UNIX input and output devices. I/O redirec-
tion and piping are two useful tools that can be used to deduce different
commands to control the terminals through UNIX system calls.

UNIX has almost as many shells as versions of the UNIX operating sys-
tem. Chapter 8 introduces some types of shells, shell evolution, and some
common concepts in UNIX shells. As there are so many kinds of shells, it

vi Preface

is difficult to put all of them in one book. Hence, our strategy is to try to
make one of them clear and integral in this book. Our choice is the primary
shell for all other shells—Bourne shell. From this point, the readers can learn
other shells by themselves from references. Therefore Chapters 9 and 10 fo-
cus on the discussion of Bourne shell as a programming language: Chapter 9
introduces basic facilities and Chapter 10 is for the advanced level.

Different from the studies in the previous chapters, which are concen-
trated on the local services and applications of UNIX in individual comput-
ers, Chapter 11 discusses the remote and network functions and services of
UNIX in servers and workstations. Since the late 1960s, UNIX has had many
original contributions to the development history of the computer networking
and Internet.

Even though this book includes 11 chapters, it does not mean they are
totally divided and irrelevant. Contrarily, they are coherent and relevant each
other. Just like UNIX itself, its knowledge should be a link-up and cooperative
“system”. And we try very hard to unfold the information gradually and step
by step in this book. When you, dear friends and readers, finish this book,
you will have a relatively whole and systematical idea about UNIX. From
that point, you can develop your applications on UNIX or other operating
systems, or even build up a new operating system for a certain computer
hardware system. This is just what the authors of this book really expect.

Historic and Active UNIX and Meaningfully UNIX Learning

As an open-source operating system, UNIX made its history during two
decades of 1969 —1989. Maybe some say it has gone. However, UNIX’s open-
ness, which brought different groups of developers together to communicate
their developing ideas and to respond feedback each other, really cultivated
an excellent generation of operating system developers. We should remember
these names: Dennis M. Ritchie, Ken Thompson, Robert S. Fabry, William
N. Joy, Chuck Haley, Samuel J. Lefflerand, and more. The first two made
their contribution to the premier UNIX System series and were honored by
the ACM Turing Award in 1983 because of their work in UNIX, and the
latter four did their great work on the primary UNIX BSD versions. Just as
they made the earlier UNIX code open to the academic world and strived
to move UNIX from one machine to another, UNIX grew and evolved. And
even more, it left a lot of valuable academic papers about operating systems
for the successors.

For its development process as an intact software system, UNIX, which
presented solutions in detail, is unchallenged for generations of programmers
Compared to UNIX, its commercial counterparts usually provide a perfect
environment that hides almost all the development details of lower levels of
operating systems, which may leave a limited space for application program-

Preface vii

mers and also confine their imagination and creativity. This tendency can
also affect the ability of system development newcomers to develop an intact
software system that can handle software as well as hardware by restricting
the field of vision to some detached modules or applications so as to result
in software maintenance costly and complicated.

Further, just understanding the theory of operating systems, readers can-
not image and understand well how the operating system works. With UNIX
as a real case, readers can map the abstract algorithms, mechanisms and
strategies of operating system theory into the real modules, functions and
programs of UNIX implementation one-to-one. The abstract theory can be
exemplified. In this way, as the promising programmers, readers can under-
stand well and master these algorithms and mechanisms, practice them in
their own development, and stimulate novel algorithms and mechanisms that
may be more effective and efficient to their own context.

It seems as if a repetition of the old tale when considering the discussion
on UNIX, which, all in all, reached its heyday around 1980s. In the latest
two decades, however, due to commercial purposes and activities, there are
no other operating systems like UNIX, which is so thoroughly open for the
academic community to learn and do research.

In addition, there are plenty of references about UNIX that have been
published, but most of them were originally published around 1980s. For
the recent promising programmers, the published classics may be somewhat
obscure because of the sparse context that might not be necessary for readers
in those days but can be unfamiliar to nowadays readers. As the well-known
rapid development of computer hardware in the latest decades, computer
architecture and structure have made a big change. This change has also
wielded a deep influence on the theories and concepts of computer, which
makes the difficulty for recent readers to understand well descriptions and
expressions in the published UNIX classics, and to map them properly into
practical cases. It is possible to build an obstacle for readers to learn from
them. Otherwise, for the operating system construction, which belongs to
software developments but resides the one of the most exciting and integrated
of software development, it would be a pity and defect if losing an operational
means. Fortunately, this means can be gained by doing research on UNIX.

It is taken that UNIX has its own philosophy and several items in the
philosophy are written in different references. If having the right, we can say
that the most important one should be the UNIX programmers’ dedication
and passion to their work. UNIX is also deemed to a programmer’s OS. UNIX
programmers have done a wonderful work just as for tackling a necessary
affair, from which others else really benefit. It is critical for the academic
community.

UNIX benefited also from those days. If AT&T, at that time, could market
computer products without a 1956 Consent Decree signed with the Federal
Government, and if Bell Laboratories did not withdraw Ken Thompson and
others from the MULTICS project, and if Professor Robert S. Fabry of the

viii Preface

University of California at Berkeley did not contact Ken Thompson at the
Symposium on Operating Systems Principles at Purdue University in Novem-
ber 1973, we would have a totally different story about UNIX. It needs the
open and free soil to breed an academic activity. The more relieved the out-
side environment is, the more natural the academic activity develops within
the environment. UNIX was destined for being flourishing in its day.

Even though being just observers on this period of history, the authors of
this book are impressed by the passion and concentration that UNIX devel-
opers had in the day. During five years of teaching UNIX in their campuses,
the authors realized that if this fantastic piece of history was not introduced
to more readers, it would be a pity for authors as well as readers. In this
high-technology and high-material-civilization age, UNIX development pro-
cess can give readers some new inspiration—a glowing motivation from inside
to accomplish a meaningful work.

A General Survey of UNIX Development

Observing different versions of UNIX emerging, the authors and readers can
discover that it is a process of constant development, amendment and en-
hancement. In this process, UNIX developers’ thoughts were adjusted and
enriched with the development of computer hardware and peripherals, and
the proposal of new application demands. It resulted in UNIX’ s being moved
to execute on different hardware platforms and fitting in different projects,
which also naturally made UNIX’ s portability and scalability practice and
reinforce repeatedly and concretized the concepts of portability and scalabil-
ity in operating system theory.

UNIX drew on a lot of ideas of the earlier operating systems, and its open-
ness made the idea-drawing expand into different UNIX versions and different
groups of developers. For a new programmer, it is also necessary to derive the
precursors’ development thoughts and experiences. Only if learning from the
precursors, newcomers can enrich their knowledge gradually and effectively,
and the novel thinking can just grow from thick knowledge reserves.

For promising developers, the UNIX development process was also a train-
ing program. Linux is a successful example of UNIX derivatives. Through this
training program with deducing mentally and programming physically, de-
velopers can get familiar with the computer system as a whole, including
both hardware and software.

With the advent of commercial operating systems, most of the readers do
their jobs on encapsulated and transparent operating systems. On the other
hand, many students and graduate students of computer disciplines mostly
start their studies from the theory of operating systems. A transparent, well-
designed and inextricable operating system seems like saving the users a lot
of time and effort, but it also cuts the exploring road towards the inside

Preface ix

of operating systems and the underlying hardware parts. For real developers
and programmers, it may take a big risk to sit on a seemingly-transparent but
unfamiliar system to do their developments—finally they may encounter some
bugs that they cannot tackle. They have to experience something that can let
them understand what really make the construction of an operating system,
what the kernel of an operating system does for users, and how algorithms and
mechanisms in the theory of operating systems are implemented. Even though
the disassembled UNIX cannot tell all the story of a well-designed modern
or future operating system, it can give the mapping or clues to different
functions and services, which can be treated as an anatomy lecture of a
promising surgeon.

In other words, a well-designed operating system may be daunting for a
promising developer, which is complicated and confused. The simplicity and
clarity of UNIX can help readers walk out of the swamp and sort out the
confusion, and lead them to face and tackle more sophisticated problems.

Targets and Strategy of this Book

Knowledge needs to renew and information needs to update. The updating
includes the expression of a convincing, successful and classical process in a
proper, timely and new way. Maybe the UNIX story is old, but it can give
different inspirations to people in different ages, which is still developing. The
authors hope the developing can be reflected in this book.

One of the targets of this book is to let the UNIX philosophy propagate
and carry on. Let more readers comprehend this philosophy’s results—the
fast development, maintainability and scalability of an operating system.

The authors also want to present readers (especially, programmers) two
aspects of a whole operating system and any one of its subsystems, in other
words, to give not only the inside implementation process, which is viewed
by the system or application programmers, but also the outside application
performance, which is usually felt by the end users. In this way, readers cannot
only keep the view of the system constructors but also be considerate of the
end users when developing their systems. During development, a system can
benefit from that its developers can consider more for its end users.

For readers, it is easy to enter the learning from user interfaces of UNIX
operating systems since they have usually had the experience of using one of
operating systems in their daily works or lives. Thus, in this book, we take
this strategy: when starting one topic, we present it from its user interface,
and then go into the kernel with the system calls and lower-level algorithms
if possible. In this way, readers can be brought from a familiar environment
into elusive and deep techniques.

To describe algorithms, we try to use common English language rather
than some computer language, such as C or assembly language. The primary

X Preface

reason is: we try to make algorithms more readable and help readers save
their time and effort. For a programmer, it is often time-consuming to read
some code that is written by others.

Intended Audience

This book is written for the wide groups of readers who want to master
the professional knowledge of operating systems through a real and open-
source case. Its main readers include graduates, senior undergraduates and
teachers of computer and software majors, and potential researchers on ap-
plicable computing and engineering modeling. The readers can also be ones
who maybe have some or have not much knowledge related to Computer
Science and Technology and Software Engineering, but have a strong inter-
est in these fields and want to get into them quickly, acquire some useful
and important knowledge and reach an advanced level in the relevant fields
after learning. This book can help readers construct, not only as the users
of operating systems but also in the view of the operating system designers,
the knowledge on the UNIX operating system, and even on other kinds of
operating systems. From this point, readers can build up their projects on
an operating system. Or on this basis, readers can go deep into how UNIX
and other operating systems to be designed and programmed because many
versions of UNIX are open-source code, like Linux, and adjust and modify
the operating systems on their own computer systems.

For readers whose mother tongues are not English, it may be more diffi-
cult to read and learn an English edition of the academic book than books
written with their mother tongue. However, it is necessary for readers to have
the ability to read the English editions of academic books, especially for com-
puter and software professionals, because most papers on the advanced and
update science and technology are written in English, especially in the field
of computer hardware and software. Why not to try to gain this ability just
from your learning process? Maybe it is difficult for you now. But nothing is
easy when starting it. Maybe when you finish this book, you say, “It is not
that hard, is it?” So try it now.

Yukun Liu
Yong Yue
Liwei Guo
January 2011

Acknowledgements

This book is funded by Academic Work Publication Fund of Hebei University
of Science and Technology.

The authors of this book would like to give their thanks to Ms. Hongying
Chen, Editor of High Education Press in China, who gave generously of her
time and expertise to edit this book.

Contents

1 Background of UNIX Operating System - - -« 1
1.1 Introduction of Operating System - « -« -« v oo 1
1.2 Types of UNIX « ¢ v cevvvtvmmnnennninennaereanen, 3
1.3 History of UNIX s -:ssovsmssinsssmmmsnsesssussss 4
L ISEMIIBBEY: - - o wocn s e bR R 6
PrOBLEIIIS: « « « « =« ot et et e e 7
RofeTeroas: wim o5+ 5 ne e85 6 i+ 3 HGEEE i 5538 0FOEE 5§ 4 B EHGE 7

2 How tO SEATt + « «» co s oo e ossqaabma s s oss Samosiesssisnss 9
2.1 UNIX Software Architecture: « - - -« -« - v vvev i 9

211 UNIX Kernelsis::ssvososssissmamnssesvossns 10
2.1.2 System Call Interface - - -+ -+« -+ o v v e 12
2.1.3 Standard Libraries and Language Libraries - - - - -« - - - 14
214 TUNIX Shell 5w ic s s s smmmansen aaamssissamwns 14
BHE ApOEeaTRus - v - - o mwen s oA AGE LS B e 14
2.2 UNIX EDVITONIMENE « = = « « « ¢+ o v v m v et aemaee e e 15
2.3 Character User Interface Versus Graphical User Interface- - - - 16
924 UNIX Command LINES: - « « « « « = =« oo v v mmeeume e 17
2.4.1 UNIX Command Syntax: -« « -« ««cvvvvenenn. 18
2.4.2 Directory Operation Commands « « = -+« =+« oo v v v v 19
2.4.3 File Operation Commands - - -+« -« c v v ov oo 24
2.4.4 Displaying Online Help- < - - -+« - v o v e 30
2.4.5 General Utility Commands « = « = =« v« v oo vv v n o 32
2.4.6 Summary for Useful Common Commands - - - - - --- - - 34
2.5 UNIX Window SyStems - « - « <+« = e v v v vvenennennnnen.. 35
95,1 'ShEptling K« -~ oomnsnsvrampan s sppen s aers 35
2.5.2 Working with a Mouse and Windows: » « -+« - - -« o 36

253 Terminal Window: + ¢ + ¢ ¢+ ¢ o s v v v v o0 0o 0o v v vna s 37

xiv

Contents
2.5.4 Using a Mouse in Terminal Windows: « « « -« <+« .. 37
2.6 Shell Setup Files - « « « « oo v v vmen e 38
D7 SUIITATY= « v s ov o wo s w ey e F By SN B Y EBE e 5 40
ProODIEITIS: « « « « v« o v o e e e e e e e e e e 41
Referenceg: : s s sscess s aamamssesnanasinssndds P RREE 43
Text BEAItOrs: « « « -« « « t o vt ettt et e e et e e e e 45
3.1 Difference Between Text Editors and Word Processors « « - -« - - 45
3.2 Introduction of Pico Editor- - -+« -+« v v v v v 46
3.2.1 Start pico, Save File, Exit pico « -+« -+ v v oo oot 47
3.2.2 Create a New File with Pico« ++ oo v v 48
3.2.3 Cursor-moving Commands in Pico « -« o v ot 49
3.2.4 General Keystroke Commands in Pico: - -« -+« - v 50
3.3 The vi Editor and Modes -+« + «+ + =+« v v v v v v i 52
3.3.1 Three Modes of the vi and Switch Between Them - - - - 52
3.3.2 Start vi, Create a File, Exit vi -« -« -+« v oo 53
3.3.3 Syntax of the vi Commands -« - -+« oo v v 55
3.4 Practicing in Insert Mode of the vi Editor - - - -« -+« - oo oo e 56
3.5 Practicing in Command Mode and Last Line Mode of the vi
Bditors s sssessssnbsmass smuncars b aEasds basEassb 62
3.6 Using Buffers of the vi Editor- - - -+« « v v vvv i onn 65
3.7 The vi Environment Setting « « « « « «« v v v v 67
3.8 Introduction of the emacs Editor- « -« -+« - v v v v oo 69
3.8.1 Start emacs, Create File, Exit emacs- -+ -« -« -+« .. 70
3.8.2 Buffers, Mark and Region in emacs - -« « -« +«c v oo v v 71
3.8.3 Cursor Movement Commands - -+« = -+« = v v vve et 72
3.84 Keyboard Macros: « - « -« v e v v veunennnenaenen. 73
3.8.5 Search and Replace « « « -« == cvovvvmeenennann. 73
986 Operation EXamiple - > csvussvesnrsnsssnsvsis 74
3.8.7 Programming in emacs: « « + + st o v e e 76
30 BUDATY- s+ 55 55685500 rss8sss osEREE S b wH S E 3 7
Problemes = =~ %55 5533 %655 5 85566555 53565854 85H650550 77
REFEIOIICES - « « « - « = =+ o vt o et et e ae et e 79
UNIX Process Management: « « - « -« =« ««veenieeneen. 81
4.1 Multiple Processes’ Running Concurrently: - - -« -+« .-« ... 81
4.1.1 Fundamental Concept for Scheduler and Scheduling
Algorithin = « 2 s 1o svmuomssessamssssvasnssssms 83

4.1.2 UNIX Scheduling Algorithm and Context Switch--- - - - 84
4.2 Process States 86

