EihEEEEEeER
BRSREEA TS0

B C++ tAHRSSCI
DATA STRUCTURES

A Pseudocode
Approach
with C++ - ;

ARERE AR [—————

www.pptph.com.cn

sEEE 9FH ESNEARSRKERNESHARELM

MiIEEIag C++ (ARSI

DATA STRUCTURES
A Pseudocode

Approach
withC++

FHBIERA KRR T EF I BIRES .

-ﬁj J' i j AHRETENE LB RIE RS SR
1 11010 B, (EEEEHP IR ERSBRHRERAMT.

ERRG NS TERNESBIA T AL REIR
HIIZHBE.

SRGEEREANRERDT, KEILAERIDN
FC++ WiEE, MISRIEBREMFEENELD.

FTENBERNRIEAFETENNNR,

FRAEREAR E (Standard Template Library STL)#{EA
AL AR B REM R P NE,

ISBN 7-115-09766-6

9'"787115"097668">

THOMSON

BROOKS/COLE

ISBN7-115-09766-6/TP+ 2527

EHr.55.00 7T

AEM%&WHI

www.pptph.com.criS

g | u

+m
o
y
i
X

-

THOMSO

] N o {0l 8 25 X A0
wHITREKESREE

Bt s Cc++ BEHRE
DATA STRUCTURES
A Pseudocode Approach with C++

[H5hE GRS beRfE B SEAR RS Skt

SVIRLSMIBI C++(RESSLIN
(B3 ki)

Data Structures A Pseudocode Approach with C++

Richard F. Gilberg

Behrouz A. Forouzan

EAR D B WA A AEHRES AR o

EHfemgE (cIp) BiE

BRI C++VADSEHL / () H/RIE# (Gilberg, RE), () /KL (Forowzan, B.A.)
. Ao ARHPEH AL, 2002.1
ISBN 7-115-09766-6

L¥.. IO%..@f.. I OEELEHN—HEXQCIEFTHEFRI—RIL IV.TP311.12
b [iR A B 578 CIP $E % (2001) 2 084700 5
R

Richard F. Gilberg , Behrouz A. Forouzan: Data Structures A Pseudocode Approach With C++

ISBN 0-534-95216-X

First published by Brooks/Cole, a division of Thomson Asia Pte Ltd, United States of America.

All Rights Reserved.

Reprint for People’s Republic of China by Thomson Asia Pte Ltd and PPTPH under the authorization of
Thomson Learning. No part of this book may be reproduced in any form without the prior written permission of
Thomson Learning and PPTPH.

FEEXFEEAHBRE S HAEEA LR

A REREE H AR B A8 5] AR AR, HARAREERE. RERHREBEFA, FEUEME
RAEHEBEMAE.

MEALERA, BENLS.

[5h 3 4 6 % BB £ B P 5 BER AL 7 M
BIBREHWH C+ + AR
(EXhR)

¢ E Richard F.Gilberg Behrouz A .Forouzan
HIEmE BRICH

o ARIPEMRMBEBEEST RAEWRERIXEIBFEHI4ES
HR4% 100061 8 F & 315@ pptph.com.cn
M4k http://www. pptph.com.cn
EHEML 010-67129212 010-67129211(f5H)

63 WA A SR A R 7 4

b 5T A PH R B ED R) ER A
FHRBEAELRRETHEH
¢ JFA.787x1092 1/16
EN3 .42.75
FH 1047 FF 2002 4F 1 A% 1R
EN#:1 -3 000 At 2002 4F 1 AdLECE 1 W ER A

EENARBIC EF.01-2001-2487 5
ISBN 7-115-09766-6/TP+2527

SEM.55.00 ¢
ABMANERBEE,FSEHBER BiE:(010)67129223

N RE

AHH C+H+IET R BEREM .

EHEAN 2%, BEAEE THESHOESTEMMN, SEER, H
Fr. BER. HEtk. BAFI. 3. WUARES. HPREt T HENKEERE
FFE, BHETEZEHMNHERENGIE. WRBIEAHTHEHAKN C++iES
RAIR, XIEFEB— LM NARPMIRREREE . 2BNEEETS
A BHIBEFIARER

AHE SN & RERRITEN T ZE BRI EA,)
YEAT W R IBRLEHNSEBE.

SRS - S

o T s DT

i I % | L hp e [. ' . S ¥ - I R
L W TR T TR g R P SR | St &

VA R T A RE Y e A

P Ll L Bt O ol B ETBRDE Y o' i A
R S il . ' - i L. |
ST TIRASTIE - PR TR ST R AR T (R
' . S
'\I '-' h i +4

O iy e g A e B
o S B A AT

tH ki 5% A

2001 %, HEMEDERT KT “+H” RS ERFHEBEMBERSHENEL). &
TR E, “hR” BREEFREERE ‘MEFEAEM, 2HRERE” HEHHREST, #
BT &R, AT KR A REFERNTEM . RATMBEER AR CERE,
HilER B B R TG TEERERER, —SEMARKRIE, e & ElL
HRBITHE A RIARERENTE. AIZSCHAmRE, ZmaEEAEM 518 TE.
4ET, FIHRERERE BRI EEARNAEYRIZ SEARRKEREM . EREL WY GRE
BROFE, BERANFE, €XRIE, EEMBEM . BERIEBMHRERE,
hnaExs 5B EL, 5B R . .

AR ERLE 1977 FRAFIGH: “BEF|SHEEM, RESESM P HRORAE.”
BEEREMA WTO, 5Bk EFr 46 H A, BATBARRESFH A AT EHFRE
FRENHEAKFE BEARAA . iR —MEXRK &, B —BRFBMAEREH,
mHERHE TREFRARTEMEELTK. FI5EINRREN, TR EBFEKFR
R, REFEMREAEMENGRS, RIERIEEFHREERTEHRKE.

AT EAIF R REE” W7, REEAREFHEEMERNTE, ARIFHEBK
HAFEERERXREWIE, SEAMMEZHEM BRARGE, Mg —SEEREERAR
WFHHN . BB T EH S E TR ORE, RESELTSERKICRARE,
FMIEE RIS ERBL N ERER . XEEMARH, KRBT IHEHREER
HIBHT R, XemRERERERE SRR FKELEER EXKHENER.

H R E AN E 2 R R BRI S EARMBEM N TR —MCHR . BRI
2, FALMES (www.pptph.com.cn) bR T BATERFEEEHEH K EBRFEAER, FEH
MET IR HRER BRI RAERN ERAA, gk, FE KRETMEERERATHE
AR RGN, RATRRIBER BN SCERNT TIE, HHEZEFHR5IH
WA BRHE S BREH .

N B HE e S AR AL
2001 £ 12 A

RIS

CFRERES S MY o e R e 2 VRO A P R
L Rl 5 PR PR 1T | R R BN P A £ PR BT T LS
SRR T T e !-!-H--'F"E""WM'-!-:!'- IR B LT R R
RURERURNS Jt =it I FEE s ANERTR P A BEEERYR R
S R el Lol L SR c g BREA s T RH R .
ORI - e R b T A e A TR L S OB AR
‘i'ﬁﬂ‘l'm'.lﬂ.rl AW 1F5r 6 EEr- b di'.!"l' cor ol ol
DEE s i e 1 R M
ALl R B e L e oA 0 S ol AT e
A RO A e B A L e MGl LA R
AR E S, T e R R el Y b iy, -
At EDNA Ryl p TS S L s R DR “ra Fo - BT i
o B P B e NIRRT A M AT R
BrbnelE S g, A AT Y TR EY R R RS Y
g, THLNT RN) PR S L AN
LM R R s Balt A o) sl BT i .t&.ﬂ.‘ﬂr S 1" S Tk
T VT g R 0 plgrn T A e R
- HIL R (5 RRAF, b TR § Ut e [| ?hl!;-il-ﬁfﬂi'.'lrﬂ AR
I LY C X R A 6 LY TR,
iDL AP 1T D) AT - e Ay e o 09 D
BN el PR beBR St e w e o R RN Ay
SRR AW N A PR S R Bt - g T e
' - E ERRE - TR RN
(50 f by
AE{RENnS .)

FF

il

E R T EA AR SERR R, AAZAR R O PIA E E J) RBLR AT ZE L B LA AL EE X B
R AR R A (T 7+ BN P LS B 1) AR SR AR AR, Bl v BN S o) AR
AhEE, RE—AEHFAAREME. TENERREREFNERETENTHRT (BHE
2K, FEEMEMFTRKBTEATENFROE (H. BR, SITMT it EHEE
ROEENS, BRERATENEFTOROAE. RPN EIESHNSIE, FEE
FHARSHRE TR 7 E AT ENEE; MiTREENREAERAME ST
W T — R BB EHRR. FRERR. 2AFREWNEENERTENLREE
KB, MEZFH.

BIREN (BERNBEESEREEN—HENUETEERNRNZ LML) FEA¥
AHEIEVHZLRRECEEEANIMER. FEHNRFXER MM REENEIESLS
HIEIMES ., EESMEEEMEMCEZRNER TR, HRAARESHMEERR R, &
THEIBIEEEM, FAERERE BN RS REREE . EvENEAR CGER R
AR, WEVIPNHCZBESRERRNSANR, B ENREAT o BK# C R & 2
TRIHAFRFE, b K¥ERLE 1993 ERMTEHESHIELE MRS . AT —H5h 2R ER
AFEFRER, 1997 Filk— P HBH SRR T EAMIR.

AP R—AELAFBREESWNEM, 28RS 12 8. REVHETEIIR G52 %F).
BER (B33). Bk (B4, BA\F| (BESE). B (BB7F). AVLI (FE8F), # (9
), B (103 ME G 128) FEMARMNEREH; NMETXEHELERETE
PINIARRRER; SHT 5NN EEEENLIERE: 2 TXSEEREEN K
22 AR . FEEBAES 6 TEXTIBIABIAN TAEIRER ., 7628 11 ZEXHARYHER 19 B0 # A Bk
AT T TR R IR .

ABHEERARRA ORI BRX#BRBHIARSHEE. hREE—FMERX L
tbE B EHHRIES, FHETUREFEBRA BRES RS . FHMREN EELT
REAE AL E AR AR € P R HE S R R A, TAERM BT
TEE R TEEEEHARERERLE, BFREREMERNEFRINES. FEHER
THABE AR AR A TREMSHREF O AR, NIRRT R AL REN/EE
FAETT AR M ATHIE, BB TYI%E N—FFamt R RF PR I . HR%¥
ARG LS LN S, FRAAREUHRATRES I T %4 EVSEBRAIERE, FIfE
HESENEEHRE T FTEEEN C++EF MR, HENERIMRBHAE. BRAP
F A A C+ RIS R — L W R 5 FIEARTRE, FHBAE B IE A8 P 1 1) X 0 7%
ZIE &P BAE G B RN HECR, (ERXF I SER FERKIEEX C++1EE CEFVIEN
TR

EHEEZENTTENELREZTE, REEENHEEELE; YL I3 Pascal iF

1

=+ IBMIL%1ES . Cobol IEEMBERZEMIL, HERFEIR CESHEESEH. £
RAEETE 1998 EH R Data Structures: A Pseudocode Approach with C FERE EACT 3t — Pt
WA . EBREHAREGE, RE TEATEN S LEREEWHEFRANEIEANR,
BAR, E58%. B ENFHAAEANSEHIE T RENRIMEL, FEEEELS
H 8) B Bi(exercise). BHEENE (problem) 1 EHE (project) =R{tiEEEREEH.
, ABREZEIFWEEMNBEFHEFESE D, THETRE S ZIMMEEFER. F2
APRICREEABRAT, XTFRIERECH M E BT E, (RiE AR EREE

B HRIER LB 05| BT TR EIRRAER -
LR AEEERZERHR

2001 4E 11 HFdt X

Preface

Features of This
Book

Pseudocode

Abstract Data Types

The study of data structures is both exciting and challenging. It is excit-
ing because it presents a wide range of programming techniques that
make it possible to solve larger and more complex problems. It is chal-
lenging because the complex nature of data structures brings with it
many concepts that change the way we approach the design of programs.
Because the study of data structures encompasses an abundant
amount of material, you will find that it is not possible to cover all of it in
one term. In fact, data structures is such a pervasive subject that you will
find it taught in lower-division, upper-division, and graduate programs.

Our primary focus in this text is to present data structures as an in-
troductory subject, taught in a lower-division course. With this focus
in mind, we present the material in a simple, straightforward manner
with many examples and figures. We also deemphasize the mathemat-
ical aspect of data structures, leaving the formal mathematical proofs
of the algorithms for later courses.

Pseudocode is an English-like presentation of the steps needed to
solve a problem. It is written with a relaxed syntax that allows stu-
dents to solve a problem at a level that hides the detail while they con-
centrate on the problem requirements. In other words, it allows
students to concentrate on the big picture.

In addition to being an excellent design tool, pseudocode is also
language independent. Consequently, students can use the same
pseudocode design to implement an algorithm in several different lan-
guages. We developed our pseudocode syntax in our data structures
classes over a 15-year period. During that time, our students have im-
plemented the pseudocode algorithms in Pascal, C, and C++. In this
text, we use C++ for all of our code implementations.

As we discuss the various data structures, we first present the gen-
eral principles using diagrams to help the student visualize the concept.
If the data structure is large and complex enough to require several al-
gorithms, we use a structure chart to present a design solution. Once
the design and structure are fully understood, we present a pseudocode
algorithm, followed as appropriate by its C++ implementation.

The second major feature of this text is its use of abstract data types
(ADTs) implemented as C++ classes. To make ADTs data independent,
we use template classes. All ADTs accept either one (data) or two (data

Preface

Structure and Style

Visual Approach

Pedagogical End
Materials

Organization And
Order Of Topics

and key) arguments. In this way any data type, including derived types
and structures, can be used with all ADTs. Conversely, each ADT can
be used with any data type as long as the required operators are pre-
defined for that type. We introduce the concept immediately in Chap-
ter 1 and use it extensively throughout the text.

Not every data structure should be implemented as an ADT
class. However, where appropriate, we develop a complete C++ im-
plementation for the student’s study and use. Specifically, students
will find ADT class implementations for Lists (Chapter 3), Stacks
(Chapter 4), Queues (Chapter 5), AVL Trees (Chapter 8), B-Trees
(Chapter 10), and Graphs (Chapter 12). The code for all of the ADTs
is available on the Instructor’s Materials page at the Brooks/Cole
Web site www.brookscole.com/compsci/gilberg/cs2pp.

One of our basic educational tenets is that good habits are formed
early. The corollary is that bad habits are hard to break. Therefore,
we consistently emphasize the principles of structured programming
and software engineering. Every algorithm and program in the book
uses a consistent style. As the algorithms and programs are ana-
lyzed, style and standards are further explained. While we acknowl-
edge that there are many good styles, our experience has shown that
if students are exposed to a good style and implement it, they will be
better able to adapt to other good styles. On the other hand, unlearn-
ing sloppy short-cut habits is very difficult.

A brief scan of the book will demonstrate that our approach is prima-
rily visual. There are over 345 figures, 35 tables, 140 algorithms, 180
programs, and numerous code examples. Although this amount of
material tends to create a large book, these materials make it much
easier for students to follow the concepts.

End of chapter materials reenforce what the student has learned. The
important topics in the chapter are summarized in bulleted lists. Fol-
lowing the summary are three practice sets.

Exercises are multiple choice and short answer questions covering
the material in the chapter. The answers to the odd numbered ques-
tions are included in the back of the book.

Problems are short assignments that ask the student to develop a
pseudocode algorithm or write a short program to be run on a comput-
er. These problerris can usually be developed in 2 to 3 hours. The in-
structor’'s manual contains complete solutions for all exercises and
problems. '

Projects are longer, major assignments that may take an average
student 6 to 9 hours or more to develop.

We have tried to build flexibility into the text so that the material may
be covered in the order that best suits the needs of a particular class.
Although we use the materials in the order presented in the text, there
are other possible sequences (shown in the figure on this page). We
recommend that you assign Chapter 1 as general reading. It contains
basic information on pseudocode, abstract data types, and algorith-
mics students will need for the rest of the text.

Preface 3

The first two sections of Chapter 2 review sequential and binary
search concepts. The third section, hashed list searches, may be new
material. If you have covered search algorithms in your programming
class, you may save this chapter for later. On the other hand, if your
students have not studied searching algorithms, then you will need to
cover at least the first section. Many of the algorithms in the following
chapters require an understanding of sequential and ordered list
searching. In many texts, sorting is covered with searching. Because
our sorting chapter includes the recursive implementation of quick
sort and heap sort (which requires an understanding of trees and
heaps), we place it at the end of the text. With the exception of these
two sorts, however, it could be covered before Chapter 3.

Chapter 3 introduces linear lists and the basic linked list data struc-
tures. It also introduces the first complete ADT class. For these reasons,
Chapter 3 should be covered before the remaining chapters in the text.

Chapter 1
Introduction
Chapter 2
Searlching
Chapter 3 Chapter 11
Linked Lists Advanced Sorting
i Concepts
Chapter 4 Chapter 6
Stacks Recursion
Chapter 5 Chapter 7 Chapter 12
Queues Introduction to Trees Graphs
Chapter 8
Search Trees
Chapter 9 Chapter 10
Heaps Multiway Trees

Possible subject sequences

The stack concept (Chapter 4) is basic to an understanding of re-
cursion (Chapter 6), and recursion is in turn required to understand
trees (Chapters 7, 8, and 10) and heaps (Chapter 9). Likewise, queues
(Chapter 5) are used in breadth-first traversals in Chapters 7 and 12.

Chapter 9, Heaps, is a stand-alone chapter. Its only outside refer-
ence is the heap sort in Chapter 11.

We end the text with graphs in Chapter 12. Like many other data
structure subjects, a complete course could be devoted to graphs. In
this chapter, we review some basic graph concepts. Although this ma-
terial could be covered anytime after Chapter 3, you will find that it con-
tains some of the most difficult algorithms in the text. For this reason,
we recommend that you present Chapter 12 at the end of the term,

Preface

when your students will be much better prepared to handle the materi-
al.

No text of this scope can be developed without the support of many
people. This is especially true for this text. The basic algorithms were
field-tested by our students at De Anza College. Our first acknowledg-
ment, therefore, has to be to the hundreds of students who by using
and commenting on the text made a vital contribution. We especially
thank our student, Scott Demouthe, who not only proofed the text, but
verified every exercise and problem at the ends of the chapters.

We would also like to acknowledge the support of the De Anza staff.
Their encouragement helped us launch the project, and their comments
contributed to its success. To name them all is impossible, but we especial-
ly thank John Perry, Delia Garbacea, and George Rice.

To anyone who has not been through the process, the value of peer
reviews cannot be fully appreciated. Writing a text rapidly becomes a
myopic process. The important guidance of reviewers who can stand
back and review the text as a whole cannot be measured. To twist an
old cliche, “They are not valuable, they are priceless.” We would espe-
cially like to acknowledge the contributions of the following reviewers:

James Clark, University of Tennessee, Martin

Roman Erenshteyn, Goldey-Beacom College

James Glenn, University of Maryland

Tracy Bradley Maples, California State University—Long Beach
Shensheng Zhao, Governors State University

Our thanks also go to our editors and staff at Brooks/Cole, Kallie
Swanson, Grace Fujimoto, and Mary Vezilich. We would also like to ac-
knowledge Kelli Jauron and Kathy Davis at Carlisle Publishers Services.

Last, and most obviously not the least, we thank our families and
friends for their support. Many years ago an author described writing
a text as a “locking yourself in a room” process. While the authors suf-
fer through the writing process, families and friends suffer through
their absence. We can only hope that as they view the final product,
they feel that their sacrifices were worth it.

Richard F. Gilberg
Behrouz A. Forouzan

Contents

1 Introduction 1

1-1

1-4

1-5
1-6

Pseudocode 2

Algorithm Header 2

Purpose, Conditions, and Return 3
Statement Numbers 4
Variables 4

Algorithm Analysis 5
Statement Constructs 5
Pseudocode Example 6

The Abstract Data Type 7
Atomic and Composite Data 8
Data Structure 8

Abstract Data Type 9

A Model for an Abstract Data
Type 10

ADT Operations 11

ADT Data Structure 11

ADT Class Templates 13
Algorithm Efficiency 13
Linear Loops 14

Logarithmic Loops 14

Nested Loops 15

Big-O Notation 17

Standard Measures of Efficiency 19
Big-O Analysis Examples 20
Summary 22

Practice Sets 23

Exercises 23

Problems 25

Projects 25

2 Searching 27

2-1

List Searches 28

Sequential Search 28
Variations on Sequential
Searches 30

Binary Search 33

Binary Search Algorithm 36
Analyzing Search Algorithms 37

C++ Search Algorithms 38
Sequential Search in C++ 38
Binary Search in C++ 40
Search Example 41

Hashed List Searches 44
Basic Concepts 44

Hashing Methods 46
Hashing Algorithm 50
Collision Resolution 51
Open Addressing 53

Linked List Resolution 57
Bucket Hashing 57
Combination Approaches 58
Hash List Example 58
Summary 62

Practice Sets 64

Exercises 64

Problems 65

Projects 65

Linked Lists 67

3-1

3-3

Linear List Concepts 68
Insertion 68

Deletion 69

Retrieval 70

Traversal 70

Linked List Concepts 70
Nodes 71

Linked List Data Structure 71
Pointers to Linked Lists 73
Linked List Algorithms 73

Create List 73

Insert Node 74

Delete Node 78

Search List 80
Unordered List Search 83
Retrieve Node 83

Empty List 84

Full List 84

List Count 85

Contents

Traverse List 85 Data Structure 169
Destroy List 87 Stack ADT Implementation 170

3-4 Processing a Linked List 88 4-6 Stack ADT—Array
Add Node 90 Implementation 175
Remove Node 90 Array Data Structure 176
Print List 91 Create Stack Array 177
Testing Insert and Delete Logic 92 Push Stack Array 178

3-5 List Applications 93 Pop Stack Array 178
Append Lists 93 Stack Top Array 179
Array of Lists 95 Empty Stack Array 180

3-6 Complex Linked List Full Stack Array 180
Structures 97 . Stack Count Array 180
Circularly Linked Lists 97 Destroy Stack Array 181
Doubly Linked Lists 98 4-7 Summary 181
Multilinked Lists 103 4-8 Practice Sets 182
Multilinked List Insert 104 Exercises 182
Multilinked List Delete 105 Problems 183

3-7 Building a Linked List—C++ Projects 185
Implementation 105
Data Structure 105
Application Functions 106 S Queues 189

3-8 List Abstract Data Type—Linked 5-1 Queue Operations 190
List Implementation 112 Enqueue 190
List ADT Declaration 113 Dequeue 190

3-9 Summary 124 Queue Front 191

3-10 Practice Sets 125 Queue Rear 191

Exercises 125 Queue Example 192
Problems 127 5-2 Queue Linked List Design 192
Projects 128 Data Structure 192

Queue Algorithms 194
Create Queue 194
Enqueue 196

Stacks 135 Dequeue 197

4-1 Basic Stack Operations 136 Retrieving gusae Data 305

Empty Queue 199
Push 136
Pop 136 Full Queue 199

Queue Count 200
Stack Top 137
4-2 Stack Linked List Destroy Queue 200
Implementation 137 5-3 Queuing Theory 200
Data Structure 137 5-4 Queue Applications 202
Stack Algorithms 139 Queue Simulation 202

Categorizing Data 209
4-3 Stack Applications 146
Reversing Data 146 5-5 Categorizing Data—C++

Reverse a List 146 Implementation 211

Convert Decimal to Binary 147 Mhain Line Logic 211
Parsing 148 Fill Queues 212

Postponement 149 Print gueues 213
Backtracking 157 Print One Queue 214

4-4 Eight Queens Problem—C++ 5-6 Queue ADT—Linked List
Implementation 163 Implementation 215

Main Line Logic 164 Queue Structure 215
Get Board Size 164 Queue ADT Implementation 216

4-5 Stack Abstract Data Type 5-7 Queue ADT—Array
Implementation 169 Implementation 221

