Undergraduate Texts in Mathematics

Wendell Fleming

Functions of
Several Variables

Second Edition

ZICHRE =R

Springer 2P W) ¥ s §)

www.wpcbj.com.cn




Wendell Fleming

Functions of
Several Variables

2nd Edition

With 96 Illustrations

@1 Springer



BHEREE (CIP) #iE

ZILRE: % 2 7 = Functions of Several Variables
2nded. ; B/ () H3EH (Fleming, W.) 2.
—REIAR . —Jb. HARE B RA LA,

2010. 9

ISBN 978 -7 - 5100 - 2730 -7

[.O% 1. 0% . OLER—FKH—2
IV. D013@0174

"PEAE HE CIP BT (2010) 45 168584 &2

H #:  Functions of Several Variables 2nd ed.
1€ #. Wendell FI leming

HOE R ZTEN B2 R

RERE: BE 0B

H O &: HREBHEAFILEAR

B Rl &: =WEENEAERLAR

% T:  HAEBHRA TR (LN KA 1375 100010)
BEHIE 010 -64021602, 010 - 64015659
BFEHE kjb@ wpchj. com. ¢n

FoOoE: 24T

Ep . 18

R %&:  20104E09 A

RRAZEIZ:  EF. 01-2010 - 1415

978 -7 -5100 -2730 -7/0 - 839

E

45.00 JT




Undergraduate Texts in Mathematics

Anglin: Mathematics: A Concise History
and Philosophy.

Readings in Mathematics.

Anglin/Lambek: The Heritage of
Thales.

Readings in Mathematics.

Apostol: Introduction to Analytic
Number Theory. Second edition.

Armstrong: Basic Topology.

Armstrong: Groups and Symmetry.

Axler: Linear Algebra Done Right.

Bak/Newman: Complex Analysis.
Second edition.

Banchoff/Wermer: Linear Algebra
Through Geometry. Second edition.

Berberian: A First Course in Real
Analysis.

Brémaud: An Introduction to
Probabilistic Modeling.

Bressoud: Factorization and Primality
Testing.

Bressoud: Second Year Calculus.
Readings in Mathematics.

Brickman: Mathematical Introduction
to Linear Programming and Game
Theory.

Browder: Mathematical Analysis:

An Introduction.

Cederberg: A Course in Modem
Geometries.

Childs: A Concrete Introduction to
Higher Algebra. Second edition.
Chung: Elementary Probability Theory
with Stochastic Processes. Third

edition.

Cox/Little/O’Shea: Ideals, Varieties,
and Algorithms. Second edition.

Croom: Basic Concepts of Algebraic
Topology.

Curtis: Linear Algebra: An Introductory
Approach. Fourth edition.

Devlin: The Joy of Sets: Fundamentals
of Contemporary Set Theory. Second
edition.

Dixmier: General Topology.

Driver: Why Math?

Ebbinghaus/Flum/Thomas:
Mathematical Logic. Second edition.

Edgar: Measure, Topology, and Fractal
Geometry.

Elaydi: Introduction to Difference
Equations.

Exner: An Accompaniment to Higher
Mathematics.

Fischer: Intermediate Real Analysis.

Flanigan/Kazdan: Calculus Two: Linear
and Nonlinear Functions. Second
edition.

Fleming: Functions of Several Variables.
Second edition.

Foulds: Combinatorial Optimization for
Undergraduates.

Foulds: Optimization Techniques: An
Introduction.

Franklin: Methods of Mathematical
Economics.

Hairer/Wanner: Analysis by Its History.
Readings in Mathematics.

Halmos: Finite-Dimensional Vector
Spaces. Second edition.

Halmos: Naive Set Theory.

Hiimmerlin/Hoffmann: Numerical
Mathematics.
Readings in Mathematics.

Hilton/Holton/Pedersen: Mathematical
Reflections: In a Room with Many
Mirrors.

Tooss/Joseph: Elementary Stability and
Bifurcation Theory. Second edition.

Isaac: The Pleasures of Probability.
Readings in Mathematics.

James: Topological and Uniform Spaces.

Jénich: Linear Algebra.

Jinich: Topology.

Kemeny/Snell: Finite Markov Chains.

Kinsey: Topology of Surfaces.

Klambauer: Aspects of Calculus.

Lang: A First Course in Calculus. Fifth
edition.

Lang: Calculus of Several Variables.
Third edition.

Lang: Introduction to Linear Algebra.
Second edition.

Lang: Linear Algebra. Third edition.

(continued after index)



Undergraduate Texts in Mathematics

Editors

S. Axler
F. W. Gehring
P. R. Halmos

Springer
New York
Berlin
Heidelberg
Barcelona
Budapest
Hong Kong
London
Milan

Paris

Santa Clara
Singapore
Tokyo



Wendell Fleming
Brown University

Department of Mathematics

Providence, Rhode Island 02912

US.A.

Editorial Board

S. Axler E. W. Gehring P. R. Halmos

Department of Mathematics Department of Mathematics Department of Mathematics
Michigan State University University of Michigan Santa Clara University

East Lansing, MI 48824 Ann Arbor, MI 48109 Santa Clara, CA 95053
U.S.A. US.A. U.S.A.

Mathematics Subject Classification (1991): 26-01, 28-01, 58-01

Library of Congress Cataloging in Publication Data
Fleming, Wendell Helms, 1928-
Functions of several variables.
(Undergraduate texts in mathematics)
Bibliography: p.
Includes index.
1. Functions of several real variables.
I. Title
QA331.F63 1977 515°.84 76-40029

© 1965 by Wendell Fleming

© 1977 by Springer-Verlag New York Inc.

All rights reserved. No part of this book may be translated or reproduced in any form
without written permission from Springer-Verlag 175 Fifth Avenue, New York, New
York 10010, U.S.A.

This reprint has been authorized by Springer-Verlag (Berlin/Heidelberg/New York) for sale in the
Mainland China only and not for export therefrom

ISBN 0-387-90206-6 Springer-Verlag New York Heidelberg Berlin
ISBN 3-540-90206-6 Springer-Verlag Berlin Heidelberg New York SPIN 10570374



Preface

The purpose of this book is to give a systematic development of differential
and integral calculus for functions of several variables. The traditional topics
from advanced calculus are included: maxima and minima, chain rule,
implicit function theorem, multiple integrals, divergence and Stokes’s
theorems, and so on. However, the treatment differs in several important
respects from the traditional one. Vector notation is used throughout, and
the distinction is maintained between n-dimensional euclidean space E" and
its dual. The elements of the Lebesgue theory of integrals are given. In
place of the traditional vector analysis in £, we introduce exterior algebra
and the calculus of exterior differential forms. The formulas of vector
analysis then become special cases of formulas about differential forms and
integrals over manifolds lying in £”.

The book is suitable for a one-year course at the advanced undergraduate
level. By omitting certain chapters, a one semester course can be based on it.
For instance, if the students already have a good knowledge of partial
differentiation and the elementary topology of E”, then substantial parts of
Chapters 4, 5, 7, and 8 can be covered in a semester. Some knowledge of
linear algebra is presumed. However, results from linear algebra are reviewed
as needed (in some cases without proof).

A number of changes have been made in the first edition. Many of these
were suggested by classroom experience. A new Chapter 2 on elementary
topology has been added. Additional physical applications—to thermo-
dynamics and classical mechanics—have been added in Chapters 6 and 8.
Different proofs, perhaps easier for the beginner, have been given for two
main theorems (the Inverse Function Theorem and the Divergence Theorem.)
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Preface

The author is indebted to many colleagues and students at Brown Uni-
versity for their valuable suggestions. Particular thanks are due Hildegarde
Kneisel, Scott Shenker, and Joseph Silverman for their excellent help in
preparing this edition.

Wendell H. Fleming

Providence, Rhode Island
June, 1976
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Euclidean spaces

This book is concerned with the differential and integral calculus of functions
of several variables. For this purpose one needs first to know some basic
properties of euclidean space of arbitrary finite dimension n. We begin
this chapter with a brief review of the real numbers and the elements of
vector algebra and geometry of such spaces. Later in the chapter the concepts
of neighborhood, open set, and closed set are introduced. These constitute
the basis for studying what are called topological properties of n-dimen-
sional space.

Format

The word “Theorem” has been reserved for what the author considers
the most important results. Results of lesser depth or interest are labeled
“Proposition.” The symbol [] indicates the end of the proof of a theorem or
proposition. Occasionally part of a proof is left to the reader as a homework
exercise. The sections marked with an asterisk (*) may be omitted without
disrupting the organization. References are given at the end of the book.

We presume that the reader is acquainted with the most elementary aspects
of set theory. The symbols

¢ U, N, — Cc

stand, respectively, for is an element of, is not an element of, union, intersection,
difference, and inclusion. Sets ordinarily are denoted by capital italicized
letters. A set is described either by listing its elements or by some property
characterizing them. Thus {2, 5, 7} is the set whose elements are the three
numbers 2, 5, and 7. If S is a set and = a property pertaining to elements of S,
then {p € S: 7} denotes the set of all p € S with property n. For example,
if Z = {1,2,...} is the set of natural numbers, then § = {xe Z:x =2y — |

1



I Euclidean spaces

for some y € Z} is the set of odd natural numbers. The set {x € Z: x? = 3}
is the empty set. The set {x € Z:x(x — 1) = x* — x} is all of Z.

When the set S in question is clear from the context, we abbreviate by
writing simply {p : n}.

1.1 The real number system

While calculus has been motivated in large part by problems from geometry
and physics, its foundations rest upon the idea of number. Therefore a
thorough treatment of calculus should begin with a study of the real numbers.
The real number system satisfies axioms about arithmetic and order, which
express properties of numbers with which everyone is familiar from elemen-
tary mathematics.

We list these properties as Axioms I and IL.

Axiom |

(a) Any two real numbers have a sum x + y and a product xy, which are
also real numbers. Moreover,

Commutative law X+y=y+x Xy = yx,
Associative law x+(y+2)=Kx+y)+z x(yz) = (xy)z,
Distributive law x(y + z) = xy + xz

for every x, y, and z.
(b) There are two (distinct) real numbers 0 and 1, which are identity
elements under addition and multiplication, respectively:

x+0=x x1 =x

for every x.
(c) Every real number x has an inverse — x with respect to addition, and
if x # 0, an inverse x ' with respect to multiplication:

x+(=x)=0, xx~ ' =1,

Axiom IlI. There is a relation < between real numbers such that:

(a) For every pair of numbers x and y, exactly one of the following
alternatives holds: x < y, x = y, y < x.

(b) w < x and x < y imply w < y (transitive law).

(c) x < yimplies x + z < y + z for every z.

(d) x < y implies xz < yz whenever 0 < z.

From Axioms I and II follow all of the ordinary laws of arithmetic. In
algebra any set with two operations (usually called addition and multiplica-
tion) having the properties listed in Axiom I is called a field. A field is called
ordered if there is in it a relation < satisfying Axiom II.

2



1.1 The real number system

The real numbers form an ordered field. However, this is by no means the
only ordered field. For example, the rational numbers also form an ordered
field. We recall that x rational means that x = p/q, where p and g are integers
and g # 0. Yet another axiom is needed to characterize the real number
system. This axiom can be introduced in several ways. Perhaps the simplest
of these is Axiom III, stated below in terms of least upper bounds.

In Section 2.3 we state other axioms that turn out to be equivalent to
Axiom IIl. We should warn the reader that Axiom III is more subtle than
Axioms I and II, and that one becomes aware only gradually of its impli-
cations. However, this axiom is the foundation stone for some of the most
important theorems in calculus.

Let S be a nonempty set of real numbers. If there is a number ¢ such that
x < c for every x € §, then ¢ is called an upper bound for S. If ¢ is an upper
bound for S and b > c, then b is also an upper bound for S.

Axiom III. Any set S of real numbers that has an upper bound has a least
upper bound.

The least upper bound for S is denoted by sup S. If § has no upper bound,
then we set sup § = + 0.

A number d is a lower bound for S if d < x for every xe€ S. If S has a
lower bound, then (Problem 2) § has a greatest lower bound. It is denoted
by inf S. If S has no lower bound, then we set inf S = —oco.

ExampLE |. Let § = {1, 2, 3, ...}, the set of positive integers. Then sup § =
+o0 and inf § = 1.

ExAMPLE 2. Let g and b be real numbers with a < b. The sets
[a.b] = {x:a < x < b}. (a.b) = {x:a < x < b},
[a,b)={x:a<x<b}. (ab]l={x:a<x<bhb}

are called finite intervals with endpoints a and b. The first of these intervals
is called closed, the second open, and the last two, half-open. In each instance
b is the least upper bound and a is the greatest lower bound.

In the same way, the semiinfinite intervals

[a, 0) = {x:x > a}, (@, ©) = {x:x > a}

are called closed and open, respectively, and have a as greatest lower bound.
The corresponding intervals (— oo, b], (— o0, b) have b as least upper bound.

Let S be a set that has an upper bound. Example 2 shows that the number
sup S need not belong to S. If sup S does happen to be an element of S, then
it is the largest element of S and we write “max S” instead of “sup S.”
Similarly, if S is bounded below and inf S is an element of S, then we write for
it “min S.”



1 Euclidean spaces

EXAMPLE 3. Let § = {x: x? < 2 and x is a rational number}. Then f =
sup S and —./2 = inf S. Since /2 is not a rational number, this example
shows that the least upper bound axiom would no longer hold if we replaced
the real number system by the rational number system.

ExaMpPLE 4. Let S = {sin x:x e [—mn, n]}. Then —1 = min S, | = max S.

The real number system also satisfies the archimedean property. This means
that for every ¢ > 0, x > 0 there exists a positive integer m such that x < me.
To prove it, suppose to the contrary that for some pair ¢, x of positive
numbers, me < x for every m = 1,2,.... Then x is an upper bound for the
set § =1{e 2¢3¢,...}. Let ¢ =sup S. Then (m + 1)e < ¢ and therefore
me <c —¢ foreachm=1,2,.... Hence ¢ — ¢ is an upper bound for S
smaller than sup §, a contradiction. This proves the archimedean property.

We shall not prove that there actually is a system satisfying Axioms I,
II, and IIL. There are two well-known methods of constructing the real
number system, starting from the rational numbers. One of them is the
method of Dedekind cuts and the other is Cantor’s method of Cauchy
sequences.

Axioms I, II, and IIl characterize the real numbers; in other words,
any two systems satisfying these three axioms are essentially the same. To
put this more precisely in algebraic language, any two ordered fields satisfying
Axiom III are isomorphic.

For proofs of these facts, refer to the book by Birkhoff and McLane
[2, Chapter III].

PROBLEMS

1. Find the least upper bound sup S and greatest lower bound inf S of each of the
following sets:
(@) {x:x*—3x+2<0}
(b) {x:x3+x*—2x <2}
(c) {sin x + cos x:x € [0, #]}.
(d) {xexpx:x <0}. [Note: exp denotes the exponential function, exp x = &%,
where e is the base for natural logarithms.]

State whether sup S and inf S are elements of S.
2. Let T = {x: —x € S}. Show that —sup T = inf S.

3. Let x and y be real numbers with x < y. Show that there is a rational number z such
that x < z < y. [Hint: By the archimedean property there is a positive integer g
such that g~! < y — x. Let z = p/q, where p is the smallest positive integer such
that gx < p.]

[Note: In this book, “Show that ...” and *“Prove that ...” both mean *give
a valid mathematical proof.”]
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1.2 Euclidean E”

1.2 Euclidean E”

In this book we denote the real number system by E'. Let us now define the
space E", whose elements are n-tuples of real numbers. The elements of E”
will be called vectors.

Scalars and vectors

By scalar we mean a real number. In elementary mathematics a vector is
described as a quantity that has both direction and length. Vectors are
illustrated by drawing arrows issuing from a given point 0. The point at the
head of the arrow specifies the vector. Therefore we may (and shall) say
that this point is the vector. Thus in two dimensions a vector is just a point
(x, y) of the plane E?. Vectors in E? are added by the parallelogram law,
which amounts to adding corresponding components. Thus

(x,9) + (u,v) =(x +u,y + v).

The product of (x, y) by a scalar ¢ is the vector (cx, cy). The zero vector is
(0, 0).

With this in mind, let us define the space E” for any positive integer n.
The elements of E" are n-tuples (x', ..., x") of real numbers. For short, we
write x for the n-tuple (x!,..., x"). The notation x € E" means “x is an
element of E".” The elements of E" are called vectors, and also points,
depending on which term seems more suggestive in the context. Addition and
scalar multiplication are defined in E” as follows. If

x=x'....x"),  y=0\..., V")
are any two elements of E”, then
x+y=x'"+y, ..., x"+))
If x € E" and c is a scalar, then
cx = (ex', ..., ex").
The zero element of E" is
0=1(0,....0).

With these definitions E" satisfies the axioms for a vector space (Appendix
A.1). The term “ vector " is reserved for elements of E” rather than those of any
space satisfying these axioms.

The superscripts should not be confused with powers of x. For instance,
(x')? means the square of the ith entry x’ of the n-tuple (x', ..., x").

If n =1 we identify the I-tuple x = (x) with the scalar x. In this case
addition and scalar multiplication reduce to ordinary addition and multipli-
cation of real numbers. If n = 2 or 3 we usually write (x, y) or (x, y, z), as is
commonly done in elementary analytic geometry, rather than (x', x?) or

5



1 Euclidean spaces

(x', x2, x3). Practically all of the theorems are stated and proved for arbitrary
dimension n. However, the special cases n = 2, 3 will frequently appear in
the examples and homework problems.

The notions of vector sum and multiplication by scalars determine the
vector-space structure of E", but are not enough to define the concepts of
distance and angle. These arise by introducing an inner product in E". An
inner product assigns to each pair x, y of vectors a scalar, and must have the
four properties listed in Problem 2 at the end of the section. The one which we
shall use is the euclidean inner product, denoted by -,

oy = ¥xhl
i=1

The vector space E" with this inner product is called euclidean n-space. Other
inner products in E" are considered in Section 2.11.
The euclidean norm (or length) of a vector x is

x| = (x*x)"2

It is positive, except when x = 0, and satisfies the following two important
inequalities. For every x, y € E",
(1.1) [x-y| <|x|ly| (Cauchy’s inequality),
(1.2) Ix +y| <Ix| + |yl (triangle inequality).
ProoF OF (1.1). If y = 0, then both sides of (1.1) are 0. Therefore let us
suppose that y # 0. For every scalar t,

X+ty) (xX+ty)=x"x+2x-y+ -y,

since the inner product is commutative and distributive [Problem 2, parts
(a), (b), and (c)]. The left-hand side is |x + ty|%, and x - x = [x|%, y "y = |y|%
The right-hand side is quadratic in t and has a minimum when

X'y

o

Substituting this expression for t, we find that

l='o=

= ¥

lyl?

0<|x+tyyl? =[x|*> =
or
Ix - yl* < |x*y).
The last inequality is equivalent to Cauchy’s inequality. O
From the proof we see that equality in Cauchy’s inequality is equivalent
to the fact that |x + toy| = O, that is, that x + 1,y = 0. Thus, if y # 0,

|x*y| = |x||y| if and only if x is a scalar multiple of y. If x - y = |x||y|, then
X is a nonnegative scalar multiple of y (and conversely).
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