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Abstract

Efficient trajectory planning algorithms are a crucial issue for modern autonomous
underwater vehicles. Classical trajectory planning algorithms in artificial intelligence
are not designed to deal with wide continuous environments prone to currents. Fur-
thermore torpedo-like underwater vehicles are strongly nonholonomic. A novel Fast
Marching based approach is proposed to address the following theoretical issues.
First, an algorithm called FM* is developed to efficiently extract a 2D continuous
and derivable curve from a discrete representation of the environment. Second, un-
derwater currents are taken into account thanks to an anisotropic extension of the
original Fast Marching algorithm. Third, the vehicle turning radius is introduced
as a constraint on the curvature of the optimal trajectory for both isotropic and
anisotropic media. Further developments are proposed to optimize the Fast March-
ing based method to real-time constraints. On one hand, a fast multiresolution
method is introduced to extract suboptimal trajectories. On the other hand, a dy-
namic version of the Fast Marching algorithm called DFM is developed to efficiently
replan trajectories in dynamic unpredictable environments. Besides, it is shown
that DFM algorithm is an excellent tool for visibility-based trajectory planning in
a-priori unknown domains. The overall Fast Marching based trajectory planning
method has been tested on simulated underwater environments and validated on a

real experimental platform in open water.

Keywords: artificial intelligence, trajectory planning, Fast Marching algorithm,
autonomous underwater vehicle, isotropic and anisotropic ordered upwind methods,
functional minimization, curvature radius, unknown environment, multiresolution

method, dynamic replanning, visibility-based navigation.
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