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Introduction

The second volume of this series is devoted to the Proceedings of
the Second Anniversary Symposium under the chairmanship of the
Niels Bohr Visiting Professor of the year — Professor L. Rosenfeld,
Deputy Director of NORDITA, Copenhagen, and the Editor of Nuclear
Physics. With particular appropriateness, the Symposium was inaugu-
rated by the Honorable C. Subramaniam, Union Cabinet Minister, the
founding father of the Institute.

The meeting was characterized by two features: (1) the enlargement
of the scope of the discussions in theoretical physics, with the inclusion
of many-body problems and statistical mechanics: (2) Seminars on
pure mathematics, stimulated by the presence and participation of
Professor Marshall H. Stone of Chicago as the First Ramanujan Visit-
ing Professor at the Institute.

The year 1963 marked a new stage in the development of high-
energy physics — the first successes of SU (3) symmetry and the eight-
fold way had such an impact on the scientific world that the hard,
unyielding domain of strong interactions was now again open to €x-
ploration. The volume opens with two significant lectures by Sudarshan
and O’Raifeartaigh on fundamental problems relating to internal sym-
metries. The theory of Regge poles, after its initial triumph, met with
rough weather, the nature and intensity of which can be realized from
the series of discussions in this volume.

In statistical mechanics, we had the privilege of having with us three
leading participants, Zumino of New York, Dewitt from Berkeley, and
Mohling from Colorado, whose contributions to this volume sum-
marize their academic program during their stay at our Institute.

Marshall Stone’s lecture on some current trends in mathematical
research was perhaps the best possible mode of initiating studies in
pure mathematics at the Institute. It was followed by a systematic
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vi Introduction

account of semigroup methods in mathematical physics by Bharucha-
Reid. The seminar talk on the mathematical problems of cascade theory
by Srinivasan is the first in a series on stochastic processes, the rest of
which will follow in succeeding volumes.

As part of the surging current of scientific literature, this volume, we
hope, will convey the “integrating power of mathematics”* and the
“universality of physical laws.”

Alladi Ramakrishnan

* 1 am indebted for this phrase to Professor M. J. Lighthill, who referred to the
role of mathematics in his inaugural lecture entitled “Waves in Fluids” on as-
suming the Royal Society Research Professorship in 1965.
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Origin of Internal Symmetries

E. C. G. SUDARSHAN

UNIVERSITY OF ROCHESTER
Rochester, New York

1. INTRODUCTION

Symmetry groups in physics seem to belong to two classes: the
so-called relativity (or frame) groups, which may be called the external
symmetry groups, defined by the geometric relations between “inertial”
systems for which the laws of physics are the same, and the internal
symmetry groups. We call the symmetry “internal” because we see only
its manifestations; there is no primitive geometric characterization of
the symmetry group from any fundamental dynamic principle. We
shall try to see to what extent a dynamic principle can be expected to
generate a symmetry group.

In this connection, two sets of quantum numbers can be distin-
guished—the additive quantum numbers (such as the third com-
ponents of J and T), which are algebraically additive, and the nonad-
ditive (“vector”) quantum numbers (such as the total angular mo-
mentum .7, total isotopic spin T, etc.), which obey vector laws of ad-
dition and multiplication. One fact worth recalling is that the
irreducible representations of a compact group are finite dimensional
and are equivalent to unitary representations.

We naturally ask about the properties of particles in interaction.
Suppose, for example, we consider the following (virtual) reaction:

N—N+n=n

From the (NN=) vertex, we can write the invariant interactions (by
using the Clebsch—-Gordan coefficients) and obtain the following
relationships between the various (NN=) coupling constants (g) and
among the various virtual transition probabilities:
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2 E. C. G. Sudarshan
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where p and n refer to the proton and neutron, respectively. From
these we conclude that for the total widths

I' (n — any particle) = I' (p — any particle)

We know that the multiplet structures displayed by the known
particles are consequences of the (postulated) existence of an internal
symmetry. We therefore ask whether the existence of the multiplet
structure conversely implies an internal symmetry.

Recently, there have been a good many attempts to explain the
internal symmetry by some direct dynamic calculations. If we start
with a multiplet of N vector mesons of equal masses and assume that
the interactions among these vector mesons are essentially trilinear in
character, we can make a dynamic scheme in terms of a straight-
forward and self-consistent bootstrap mechanism between these
(equally massive) vector mesons. One such attempt was made by Capps,'
who found that the interactions among these N equally massive vector
mesons obey unitary symmetry (i.e., invariance under the group SU,).
Capps was surprised to find this relationship between unitary symmetry
and a self-consistent bootstrap calculation. It looked as though unitary
symmetry could be derived from first principles. However, it is possible
that the symmetry would have emerged from the assumption of the
existence of a multiplet degenerate in mass before the interaction and
the postulate that this multiplet structure is preserved even in the
presence of interactions, so that the particles exhibit the same mass
degeneracy even in the presence of the interaction if they have equal
masses. Such arguments have been used by Sakurai,®> who tried to
prove that the emergence of the symmetry is not a consequence of a
sophisticated dynamic calculation, but rather the immediate con-
sequence of the assumptions:
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1. Equality of masses of the particles.

2. Existence of a degenerate multiplet before the interaction.

3. The presence of interaction not altering the equality of masses
(or the multiplicity of the particles).

He directly shows, as an example, that if we equate the contributions
of certain self-energy diagrams we arrive at the required symmetry.

Thus, if we equate the second-order self-energy of the nucleons
(assuming equality of masses before the interaction) as shown in
Fig. 1a and that of the pions as shown in Fig. 1b, we obtain

Zg%pzo = 2g3m7r° = g?mn* = gfum'
In this calculation the multiplets are treated “on the same footing,”
and the “total width” for each component comes out to be equal. By
taking fourth-order diagrams also, we can further deduce

8ppro = —8nnno
Thus, the symmetries may well be explained if we assume the equality
of masses and multiplicity of the particles and postulate that these
properties remain unchanged even in the presence of interaction.
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2. GAUGE FIELDS

The consequence of the existence of symmetries and the postulated
invariance of interactions under the gauge transformations of the
second kind is the existence of vector gauge fields coupled linearly to
conserved quantities (such as electric charge, etc.).

Unlike the electromagnetic field, which by itself is neutral and
interacts only with charged fields (and is thus coupled to the electric
current), gauge vector fields may themselves carry the properties.
The isospin gauge field, for instance, itself carries the properties of
isospin, and it is hence nonlinearly self-coupled. We may even consider
a situation in which the gauge vector field alone carries isotopic spin
and is consequently self-coupled. Thus, if we can write L = j*4,
for the Lagrangian of the electromagnetic interaction, where A4, is the
electromagnetic field and j* is the current to which it is coupled, what
can we write for the Lagrangian of the interaction of the gauge vector
field? Since the gauge vector field is coupled to itself, we naturally
expect that the interaction can be written as a product of these fields B.
Then how many B can enter the product ? The simplest possibility (which
we may take to be basic) is the trilinear interaction between vector parti-
cles. This is because the current is bilinear in B field and coupled to an-
other B field, making a trilinear vertex.

Cutkosky® has given a simple model in which he assumes that there
are a number (N) of vector mesons which’ have the same mass, i.e.,
he assumes a multiplet structure. Then, with a number of additional
plausible assumptions, he shows that a Lie group could be associated
with these particles. The assumptions made are:

1. The vector mesons arise as self-consistent bound states of pairs
of vector mesons.

a c a d
a c
= r + r
b d
b d b c

Fig. 2
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Fig. 3

2. The binding force is mediated by the exchange of single vector
mesons; for example, the long-range part of the force is given by
the one-particle exchange diagrams shown in Fig. 2.

3. The renormalized coupling constants are well approximated by
the simplest irreducible vertex part, with the “bare-coupling con-
stants” set equal to zero, as shown in Fig. 3.

4. Parity is conserved in strong interactions, and strong interactions
are invariant under charge conjugation.

5. Electric charge is conserved.

6. The dependence of the vertex on the internal labels F,,. is antisym-
metric in all pairs of indices.

If we represent the particles by real vector fields B,(u=1...N),
the invariant interaction has the form

Fabc Ba Bb Bc

and F,,. is antisymmetric. We then look for the eigenfunctions of
F,,.. The Born-approximation scattering amplitude is proportional to

Vab,m = (Fa.dr Fbcr - Facr der) (2)

corresponding to the two diagrams in Fig. 2 and taking into account
the antisymmetric nature of F.

Since all the particles which are together, and also all the exchanged
particles, have the same mass (which we have normalized to unity),
it is clear that we can obtain N degenerate bound states only if V has
N degenerate eigenvalues. Also, the F themselves must be eigenvectors
of V, in view of postulate (3):

Vab.cd ch.s' = )\«Fans (3)



