Graduate Texts in Mathematics

76

Algebraic Geometry

Shigeru litaka

Algebraic Geometry

An Introduction to Birational Geometry of Algebraic Varieties

Springer-Verlag
New York Heidelberg Berlin
World Publishing Corporation, Beijing, China

Shigeru litaka Department of Mathematics Faculty of Science University of Tokyo Tokyo JAPAN

Editorial Board

P. R. Halmos

Manaying Editor Department of Mathematics University of Michigan Indiana University Bloomington, IN 47401 USA

F. W. Gehring

Department of Mathematics Department of Mathematics Ann Arbor, MI 48109 USA

C. C. Moore

University of California Berkeley, CA 94720 USA

AMS Subject Classification (1981): 14-01

Library of Congress Cataloging in Publication Data litaka, Shigeru.

Algebraic geometry.

(Graduate texts in mathematics; 76)

"This volume grew out of the author's book in Japanese published in 3 volumes by Iwanami, Tokyo in 1977."

Includes index.

1. Geometry, Algebraic. 2. Algebraic varieties.

I. Title. II. Series.

OA 564.136 516.3'5 80-28195

All rights reserved. No part of this book may be translated or reproduced in any form without written permission from Springer-Verlag

- @ 1982 by Springer-Verlag New York, Inc.
- © 1977 by Shigeru litaka.

Originally published in Japanese by IWANAMI SHOTEN, Publishers, Tokyo, 1977.

Translated by Shigeru Iitaka.

English translation rights arranged with Shigeru Iitaka through IWANAMI SHOTEN, Publishers, Tokyo.

Reprinted in China by World Publishing Corporation For distribution and sale in the People's Republic of China only 只限在中华人民共和国发行

ISBN 0-387-90546-4 Springer-Verlag New York Heidelberg Berlin ISBN 3-540-90546-4 Springer-Verlag Berlin Heidelberg New York ISBN 7-5062-0106-2 World Publishing Corporation China

Shigeru litaka

Algebraic Geometry

An Introduction to Birational Geometry of Algebraic Varieties

Graduate Texts in Mathematics 76

Editorial Board
F. W. Gehring P. R. Halmos (Managing Editor)
C. C. Moore

Preface

The aim of this book is to introduce the reader to the geometric theory of algebraic varieties, in particular to the birational geometry of algebraic varieties.

This volume grew out of the author's book in Japanese published in 3 volumes by Iwanami, Tokyo, in 1977. While writing this English version, the author has tried to rearrange and rewrite the original material so that even beginners can read it easily without referring to other books, such as textbooks on commutative algebra. The reader is only expected to know the definition of Noetherin rings and the statement of the Hilbert basis theorem.

The new chapters 1, 2, and 10 have been expanded. In particular, the exposition of *D*-dimension theory, although shorter, is more complete than in the old version. However, to keep the book of manageable size, the latter parts of Chapters 6, 9, and 11 have been removed.

I thank Mr. A. Sevenster for encouraging me to write this new version, and Professors K. K. Kubota in Kentucky and P. M. H. Wilson in Cambridge for their careful and critical reading of the English manuscripts and typescripts. I held seminars based on the material in this book at The University of Tokyo, where a large number of valuable comments and suggestions were given by students Iwamiya, Kawamata, Norimatsu, Tobita, Tsushima, Maeda, Sakamoto, Tsunoda, Chou, Fujiwara, Suzuki, and Matsuda.

Fall 1981 Shigeru Iitaka

Contents

Intro	duction	1
Chap	ter 1	
Schei		4
1.1	Spectra of Rings	4
1.2	Examples of Spectra as Topological Spaces	7
1.3 l	Rings of Fractions, the Case A_f	7
1.4	Rings and Modules of Fractions	9
1.5	Nullstellensatz	13
1.6	Irreducible Spaces	14
	Integral Extension of Rings	16
	Hilbert Nullstellensatz	19
	Dimension of Spec A	22
	Sheaves	27
1.11	Structure of Sheaves on Spectra	39
	Quasi-coherent Sheaves and Coherent Sheaves	44
	Reduced Affine Schemes and Integral Affine Schemes	50
1.14	Morphism of Affine Schemes	51
	Definition of Schemes and First Properties .	54
	Subschemes	58
	Glueing Schemes	62
	Projective Spaces	63
	S-Schemes and Automorphism of Schemes	64
	Product of S-Schemes	66
	Base Extension	71
	Graphs of Morphisms	72
	Separated Schemes	75
1.24	Regular Functions and Rational Functions	78

viii .	Contents

 1.25 Rational Maps 1.26 Morphisms of Finite Type 1.27 Affine Morphisms and Integral Morphisms 1.28 Proper Morphisms and Finite Morphisms 1.29 Algebraic Varieties 	82 84 88 92 95
Chapter 2 Normal Varieties	102
 2.1 Normal Rings 2.2 Normal Points on Schemes 2.3 Unique Factorization Domains 2.4 Primary Decomposition of Ideals 2.5 Intersection Theorem and Complete Local Rings 2.6 Regular Local Rings 2.7 Normal Points on Algebraic Curves and Extension Theorems 2.8 Divisors on a Normal Variety 2.9 Linear Systems 2.10 Domain of a Rational Map 2.11 Pullback of a Divisor 2.12 Strictly Rational Maps 2.13 Connectedness Theorem 2.14 Normalization of Varieties 2.15 Degree of a Morphism and a Rational Map 2.16 Inverse Image Sheaves 2.17 The Pullback Theorem 2.18 Invertible Sheaves 2.19 Rational Sections of an Invertible Sheaf 	102 103 105 108 110 116 121 124 127 129 130 133 138 139 142 144 147 150
2.19 Rational Sections of an Invertible Sheaf 2.20 Divisors and Invertible Sheaves	152
Chapter 3 Projective Schemes	160
 3.1 Graded Rings 3.2 Homogeneous Spectra 3.3 Finitely Generated Graded Rings 3.4 Construction of Projective Schemes 3.5 Some Properties of Projective Schemes 3.6 Chow's Lemma 	160 161 162 164 167 170
Chapter 4 Cohomology of Sheaves	174
 4.1 Injective Sheaves 4.2 Fundamental Theorems 4.3 Flabby Sheaves 4.4 Cohomology of Affine Schemes 	174 175 177 179

Contents	ix

4.5 F	Finiteness Theorem	181
		182
		184
4.8 R	Riemann-Roch Theorem (in the Weak Form) on a Curve	185
		100
Regul	ar Forms and Rational Forms on a Variety	188
5.1 N	Modules of Regular Forms and Canonical Derivations	188
		191
		194
		196
		201
		202
	AND DEV.	204
5.8 S	Gerre Duality	206
~.		
		208
		208
		211
		213
		214
		216
		219
		221
0.8 1	neorems of Aurwitz and Automorphism Groups of Curves	224
Chant	7	
		226
	2	
		226
		228
		230
		235
		239
		241
		246
		248
		250
7.10 R	Tanolomatons	253
Chant	er 8	
		260
		260
6.2 K	Kiemann-Roch Theorem on an Algebraic Surface	264
	4.6 I 4.7 C 4.8 F C 6.1 F 6.2 F 6.3 F 6.6 F 6.3 F 6.6 F 6.8 F C 6.8 F	Chapter 5 Regular Forms and Rational Forms on a Variety 5.1 Modules of Regular Forms and Canonical Derivations 5.2 Lemmas 5.3 Sheaves of Regular Forms 5.4 Birational Invariance of Genera 5.5 Adjunction Formula 5.6 Ramification Formula 5.7 Generalized Adjunction Formula and Conductors 5.8 Serre Duality Chapter 6 Theory of Curves 6.1 Riemann-Roch Theorem 6.2 Fujita's Invariant Δ(C, D) 6.3 Degree of a Curve 6.4 Hyperplane Section Theorem 6.5 Hyperelliptic Curves 6.6 Λ-Gap Sequence and Weierstrass Points 6.7 Wronski Forms 6.8 Theorems of Hurwitz and Automorphism Groups of Curves Chapter 7 Cohomology of Projective Schemes 7.1 The Homomorphism β _ν 7.2 The Homomorphism β _ν 7.3 Cohomology Groups of Coherent Sheaves on P _R 7.4 Ample Sheaves 7.5 Projective Morphisms 7.6 Unscrewing Lemma and Its Applications 7.7 Projective Normality 7.8 Etale Morphisms 7.9 Theorems of Bertini 7.10 Monoidal Transformations Chapter 8 Intersection Theory of Divisors 8.1 Intersection Number of Curves on a Surface

x	Contents

8.3	Intersection Matrix of a Divisor	269
8.4	Intersection Numbers of Invertible Sheaves	271
8.5	Nakai's Criterion on Ample Sheaves	274
	* W 1x	
	2 · · · · · · · · · · · · · · · · · · ·	
Cha	pter 9	
	ves on a Nonsingular Surface	278
9.1	Quadric Transformations	278
9.2	Local Properties of Singular Points	281
9.3	Linear Pencil Theorem	287
9.4 9.5	Dual Curves and Plücker Relations Decomposition of Pirational Mana	291
9.5	Decomposition of Birational Maps	295
	• " :	
CI	10	
	pter 10	200
D-L	Dimension and Kodaira Dimension of Varieties	298
10.1	D-Dimension	298
10.2	The Asymptotic Estimate for $l(mD)$	300
	Fundamental Theorems for D-Dimension	302
	D-Dimensions of a K3 Surface and an Abelian Variety	306
	Kodaira Dimension	309
	Types of Varieties	311
10.7	Subvarieties of an Abelian Variety	312
2.5		
	pter 11	
Log	arithmic Kodaira Dimension of Varieties	320
11.1	Logarithmic Forms	320
	Logarithmic Genera	324
11.3	Reduced Divisor as a Boundary	328
11.4	Logarithmic Ramification Formula	333
11.5	Étale Endomorphisms	336
	Logarithmic Canonical Fibered Varieties	338
	Finiteness of the Group $SBir(V)$	340
11.8	Some Applications	341
	5	
Ref	erences	345
Ind	ex	349

Introduction

The purpose of algebraic geometry is to study comprehensively varieties defined by a set of polynomial equations in many variables

$$f_1(X_1, \ldots, X_n) = \cdots = f_r(X_1, \ldots, X_n) = 0.$$

Properties of varieties should be independent of the choice of coordinate systems. For example, the variety defined by $X_2 = 0$ (r = 1, n = 2) is equivalent to that defined by $Y_1 - Y_2^2 = 0$ (r = 1, n = 2) under the invertible transformation $X_1 = Y_2$, $X_2 = Y_1 - Y_2^2$. This equivalence is interpreted as the existence of an isomorphism of rings

$$\frac{k[X_1, X_2]}{(X_2)} \cong \frac{k[Y_1, Y_2]}{(Y_1 - Y_2^2)}.$$

Thus, the study of a set of polynomial equations can be reduced to the study of a commutative ring $k[X_1, ..., X_n]/a$, where a is an ideal generated by $f_1, ..., f_r$. From this viewpoint, one arrives naturally at the concepts of affine schemes and then of schemes.

However, ever since the last century, it has been believed that the more essential properties of varieties are those which are birationally invariant.

A plane curve is defined by an irreducible polynomial $\varphi(X, Y)$. The degree of φ is said to be the degree of the curve. Plane curves defined by irreducible polynomials f_1 and f_2 are birationally equivalent if the field $Q(k[X, Y]/(f_1))$ is isomorphic to $Q(k[X, Y]/(f_2))$, where Q(R) denotes the field of fractions of the integral domain R.

The degree is not, however, a birational invariant. As Abel noted, the number of linearly independent Abelian differentials of the first kind (also called regular 1-forms) on a given curve C is more important than the degree, since it is a birational invariant. This number is called the genus of

2 Introduction

C, denoted by g(C). Curves can be classified into the following three classes according to their genera:

The class II: g(C) = 0. The class III: g(C) = 1. The class III: $g(C) \ge 2$.

A similar birational classification for 2-dimensional varieties (called surfaces) was obtained by Italian algebraic geometers around the beginning of our own century.

Given a variety V of dimension n, many birational invariants can be defined, such as the plurigenera, the i-th irregularity, and the Kodaira dimension. Let $\kappa(V)$ denote the Kodaira dimension of V, which can take the values $-\infty$, 0, 1, ..., n. By means of the Kodaira dimension, varieties of dimension n can be classified into n+2 classes. When n=1, this classification agrees with that given by the genus.

Many fundamental properties of the Kodaira dimension have been found, giving some basic information about the structure of varieties.

Let V be a variety of dimension n and suppose that $\kappa(V) \geq 0$. Then by Theorem 10.3 (fibering theorem), there exists a dominating morphism $f: V^* \to W$ such that (1) V^* is birationally equivalent to V, (2) dim $W = \kappa(V)$, (3) general fibers $f^{-1}(x)$ are irreducible, and (4) for a (strictly) general point x of W, $\kappa(f^{-1}(x)) = 0$.

Varieties V with $\kappa(V) = n$ are said to be of general type or of hyperbolic type. Roughly speaking, almost all varieties are of hyperbolic type and these have rather general properties in common. For example, if V is of hyperbolic type, then the automorphism group $\operatorname{Aut}(V)$ of V is a finite group.

The number of linearly independent regular 1-forms on a complete nonsingular variety V is also a birational invariant, denoted by q(V). In particular, if dim V = 1, then q(V) turns out to be the genus of V. In general, an Abelian variety of dimension q(V), the Albanese variety Alb(V), is associated with V, together with the Albanese map $\alpha_V \colon V \to Alb(V)$.

Recently Kawamata proved that if $\kappa(V) = 0$, then α_V is surjective and general fibers $\alpha_V^{-1}(x)$ are irreducible. Thus in the case where $\kappa(V) = 0$ and q(V) > 0, the structure of V can be studied using Albanese maps. However, nothing is known about V when $\kappa(V) = q(V) = 0$. If dim V = 2, it has been shown that such a V is birationally equivalent to a K3 surface or an Enriques surface.

In the case where $\kappa(V) = -\infty$ and q(V) > 0, consider again the Albanese map $\alpha_V \colon V \to \operatorname{Alb}(V)$. One has a morphism $\psi \colon V \to Z$ obtained from the Stein factorization of $\alpha_V \colon V \to \alpha_V(V)$. Then it is conjectured that $\kappa(\psi^{-1}(x)) = -\infty$ for a general point x of Z. Actually, this has been proved for $n \le 3$ (by Enriques for n = 2; by Viehweg for n = 3). The case where $\kappa(V) = -\infty$ and q(V) = 0 seems the most difficult case to study. When n = 2, such a V is a rational surface, i.e., a surface birationally equivalent to $\mathbf{P}^1 \times \mathbf{P}^1$. This fact.

Introduction 3

discovered by Castelnuovo, was the starting point of the classification theory of algebraic surfaces by the Italian school. But in the higher dimensional case, nothing is known about such V.

Chapter 10 may serve as a guide to this rapidly developing theory of birational classification of varieties.

It is unreasonable to say that only birationally invariant properties are worth studying. For instance, the affine line A^1 is quite different from $G_m = A^1 - \{0\}$, which are both very important. However, they are birationally equivalent.

Any variety is birationally equivalent to a complete variety. Thus, when considering noncomplete varieties and studying their properties, we can no longer use birational equivalence. However, in this case, a more delicate equivalence relation, called proper birational equivalence, is introduced (see Chapter 2). One can find many proper-birational invariants such as the logarithmic genera, logarithmic irregularities, and logarithmic Kodaira dimension, which are defined by making use of logarithmic forms. A proper birational equivalence between affine normal varieties is just an isomorphism between them; hence the corresponding normal rings are isomorphic. Thus, in our study of proper birational properties of varieties, the theory of (normal) rings and birational geometry are unified; thus the theorems on Kodaira dimension could be translated into ring theory and so on.

Algebraic geometry should be a synthesis of algebra and geometry. But, in practice, it has been an algebraic approach to geometry. Our new birational geometry (e.g., proper birational geometry) is not only a revival of old birational geometry but is also a beginning of some grand unified theory of algebra and geometry.

Chapter 1

Schemes

§1.1 Spectra of Rings

a. We begin by defining spectra of commutative rings with identity, which are the base spaces of the affine schemes introduced in §1.11.

In all that follows, commutative rings A, B, ... with identity elements 1_A , 1_B , ... are referred to simply as *rings*, and ring homomorphisms $\varphi: A \rightarrow B$ are assumed to satisfy $\varphi(1_A) = 1_B$.

Definition. The spectrum of a ring A is the set of all prime ideals of A, denoted by Spec A.

Note that the ring A itself is not considered to be a prime ideal.

If $\varphi: A \to B$ is a ring homomorphism and \mathfrak{p} is a prime ideal of B, then $\varphi^{-1}(\mathfrak{p})$ is also a prime ideal of A. We note that $1_A \notin \varphi^{-1}(\mathfrak{p})$, since $1_B \notin \mathfrak{p}$ and $\varphi(1_A) = 1_B$.

Definition. The mapping ${}^a\varphi$: Spec $B\to \operatorname{Spec} A$ defined by ${}^a\varphi(\mathfrak{p})=\varphi^{-1}(\mathfrak{p})$ is said to be the mapping associated with φ .

Example 1.1. (i) For the trivial ring 0, we have Spec $0 = \emptyset$.

- (ii) If k is a field (a field is always assumed to be nontrivial, i.e., $k \neq \{0\}$), then Spec $k = \{(0)\}$.
 - (iii) Spec $\mathbb{Z} = \{(0)\} \bigcup \{(p) \mid p \text{ is a prime number}\}.$
- (iv) If k[X] is a ring of polynomials over an algebraically closed field k, then

Spec
$$k[X] = \{(0)\} \bigcup \{(X - \alpha) \mid \alpha \in k\},\$$

which can be written as Spec $k[X] = \{*\} \bigcup k$ with the abbreviations $* = \{0\}, \alpha = (X - \alpha)$.

(v) If k[X, Y] is a polynomial ring in two variables over an algebraically closed field k, then

Spec $k[X, Y] = \{(0)\} \bigcup \{(f) | f \text{ is a nonconstant irreducible}\}$

polynomial in X and Y}
$$\bigcup \{(X - \alpha, Y - \beta) | (\alpha, \beta) \in k^2\}.$$

PROOF OF (v). Clearly, it suffices to show that every nonprincipal prime ideal \mathfrak{p} is of the form $(\mathsf{X} - \alpha, \mathsf{Y} - \beta)$. Let $f \in \mathfrak{p} \setminus \{0\}$ be a polynomial with deg $\mathfrak{p} \cap \{0\}$ minimal such that f is irreducible. Since \mathfrak{p} is nonprincipal, there is an element $g \in \mathfrak{p} \setminus \{f\}$. By the Euclidean algorithm in the ring $k(\mathsf{X})[\mathsf{Y}]$, there is a $p \in k[\mathsf{X}] \setminus \{0\}$ and $q, r \in k[\mathsf{X}, \mathsf{Y}]$ satisfying pg = qf + r, where either r = 0 or deg $\mathfrak{p} \cap \{0\}$ because $f \cap \{0\}$ because $f \cap \{0\}$ is a prime ideal, $f \cap \{0\}$ because $f \cap \{0\}$ is a prime ideal, $f \cap \{0\}$ and $f \cap \{0\}$ because $f \cap \{0\}$ is a prime ideal, $f \cap \{0\}$ because and $f \cap \{0\}$ because $f \cap \{0\}$ is a prime ideal, $f \cap \{0\}$ because and $f \cap \{0\}$ because $f \cap \{0\}$ is a prime ideal, $f \cap \{0\}$ because and $f \cap \{0\}$ because $f \cap \{0\}$ is a prime ideal, $f \cap \{0\}$ because $f \cap \{0\}$ is a prime ideal, $f \cap \{0\}$ because and $f \cap \{0\}$ because $f \cap \{0\}$ is a prime ideal, $f \cap \{0\}$ because $f \cap \{$

The reader can easily verify that the maximal ideals of k[X, Y] are precisely those of the form $(X - \alpha, Y - \beta)$ with $(\alpha, \beta) \in k^2$.

- b. We shall introduce a topology on Spec A. For any ideal a of A, define the set V(a) to be $\{p \in \text{Spec } A \mid p \supseteq a\}$, and for any $f \in A$, define V(f) to be $\{p \in \text{Spec } A \mid p \ni f\}$. Then, V(f) = V(fA) and the following properties are easily verified:
 - (i) $V(0) = \text{Spec } A, V(1) = \emptyset.$
- (ii) If a and b are ideals such that $a \subseteq b$, then $V(a) \supseteq V(b)$.
- (iii) $V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}\mathfrak{b}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$. In particular, $V(fg) = V(f) \cup V(g)$ for all $f, g \in A$.
- (iv) If $\{\alpha_{\lambda} | \lambda \in \Lambda\}$ is a set of ideals of A, then $V(\sum_{\lambda \in \Lambda} \alpha_{\lambda}) = \bigcap_{\lambda \in \Lambda} V(\alpha_{\lambda})$.
- (v) For any ideal α of A, if $\varphi: A \to A/\alpha$ is the natural homomorphism then ${}^a\varphi: \operatorname{Spec}(A/\alpha) \to \operatorname{Spec} A$ is one-to-one and $\operatorname{Im} {}^a\varphi = V(\alpha)$.

Definition. The topology on Spec A is introduced by taking the sets in $\{V(a) | a \text{ ideals of } A\}$ as the closed sets.

The open sets of this topology are just those of the form

$$D(\mathfrak{a}) = \operatorname{Spec} A \backslash V(\mathfrak{a}) = \{ \mathfrak{p} \in \operatorname{Spec} A \mid \mathfrak{p} \not\supseteq \mathfrak{a} \}.$$

When expressed in terms of the D(a), properties (i) through (v) will be referred to as properties (i') through (v'), respectively. For example, in view

1 Schemes

of the property (iv'), if a is the ideal generated by $\{f_{\lambda} | \lambda \in \Lambda\}$, then

$$D(\alpha) = \bigcup_{\lambda \in \Lambda} D(f_{\lambda}),$$

where $D(f) = \operatorname{Spec} A \setminus V(f) = \{ \mathfrak{p} \in \operatorname{Spec} A \mid \mathfrak{p} \not\ni f \}.$

Note that the sets D(f) form an open base for the topology of Spec A.

The following properties of the mapping ${}^a\varphi$: Spec $B \to \operatorname{Spec} A$ associated with $\varphi: A \to B$ are easily verified.

Proposition 1.1

- (i) ${}^a \varphi$ is continuous. More precisely, if $f \in A$, then $({}^a \varphi)^{-1}(D(f)) = D(\varphi(f))$, and if α is an ideal of A, then $({}^a \varphi)^{-1}(V(\alpha)) = V(\alpha B)$, where αB is the ideal of B generated by $\varphi(\alpha)$.
- (ii) For any ideal b of B, one has

$${}^a\varphi(V(b))\subseteq V(\varphi^{-1}(b)).$$

- (iii) If $\varphi: A \to A/a$ is the natural homomorphism, then ${}^a\varphi: \operatorname{Spec} A/a \to \operatorname{Spec} A$ is a homeomorphism of $\operatorname{Spec} A/a$ onto V(a).
- (iv) If $\varphi: A \to B$ is surjective, then φ is a homeomorphism of Spec B onto the closed subset $V(\text{Ker }\varphi)$ of Spec A.
- (v) On the other hand, if ${}^a\varphi$: Spec $B\to \operatorname{Spec} A$ is surjective, then $V(\operatorname{Ker} \varphi)=V(\varphi^{-1}(0))=\operatorname{Spec} A$. Hence $\operatorname{Ker} \varphi$ is a subset of every prime ideal of A.

For the proof of the next propositions, we need a result from ring theory.

Definition. If α is an ideal of A, the radical $\sqrt{\alpha}$ is $\{a \in A \mid a^m \in \alpha \text{ for some integer } m > 0\}$. $\sqrt{(0_A)}$ is said to be the nilradical of A, which consists of all nilpotent elements of A.

 \sqrt{a} is an ideal containing a.

c. The following result is a key lemma in the first stage of the theory of spectra.

Lemma 1.1. If a is a proper ideal (i.e., $a \neq A$) of A, then there exists a maximal ideal containing a.

PROOF. Let \mathfrak{F} be the set of all proper ideals of A containing \mathfrak{a} . Then \mathfrak{F} is not empty, since $\mathfrak{a} \in \mathfrak{F}$. The set \mathfrak{F} is naturally ordered by set inclusion, i.e., $\mathfrak{a}_{\lambda} \leq \mathfrak{a}_{\mu}$ if and only if $\mathfrak{a}_{\lambda} \subseteq \mathfrak{a}_{\mu}$. We shall show that \mathfrak{F} is an inductively ordered set. In fact, letting $\{\mathfrak{a}_{\lambda} | \lambda \in \Lambda\}$ be an arbitrary linearly ordered subset of \mathfrak{F} , define $\mathfrak{a}_{\star} = \bigcup_{\lambda \in \Lambda} \mathfrak{a}_{\lambda}$, which becomes a proper ideal, i.e., $\mathfrak{a}_{\star} \in \mathfrak{F}$ and $\mathfrak{a}_{\lambda} \leq \mathfrak{a}_{\star}$ for any $\lambda \in \Lambda$. Hence, the ordered set \mathfrak{F} is inductive.

By Zorn's lemma, & has a maximal element m, which is a maximal ideal containing a.

Corollary

- (i) Spec $A = \emptyset$ if and only if A = 0.
- (ii) $V(\mathfrak{a}) = \emptyset$ if and only if $\mathfrak{a} = A$.

EXAMPLE 1.2. Let $a_1, ..., a_r \in A$. If there is no prime ideal containing $a_1, ..., a_r$, then there exist $b_1, ..., b_r$ in A such that $a_1b_1 + \cdots + a_rb_r = 1$.

PROOF. Let $a = \sum_{j=1}^{r} a_j A$. If $a \neq A$, then there exists a prime ideal p containing a by Lemma 1.1.

§1.2 Examples of Spectra as Topological Spaces

a. In $X = \text{Spec } \mathbb{Z}$, the closed sets are X, \emptyset , and the sets of the form $\{(p_1), \ldots, (p_s)\}$, i.e., the finite sets of prime numbers.

b. Let k be an algebraically closed field and k[X] be the corresponding polynomial ring. Then as was seen in Example 1.1.(iv), Spec k[X] can be written as $\{*\} \cup k$. Since any ideal of k[X] is either (0), (1), or (f), where $f \in k[X] \setminus k$, the closed sets are $\{*\} \cup k$, \emptyset , and the sets of the form $\{\lambda_1, \ldots, \lambda_s\}$ where the λ_i are the roots of f(x) = 0 for such an f.

Note that in this case a union of finitely many closed sets F_1, F_2, \ldots, F_r none of which is the whole space is not the whole space. In other words, if U_1, \ldots, U_r are nonempty open sets, then $U_1 \cap \cdots \cap U_r$ is not empty.

Now, let A = k[X, Y] as in Example 1.1.(v). Then

Spec
$$A = \{*\} \cup \{(f) | f \in k[X, Y] \setminus k \text{ is irreducible}\} \cup k^2$$
.

If we consider k^2 as the topological space with the topology induced from Spec A, then the closed sets are k^2 , \emptyset , and finite unions of the finite sets and the sets of the form $\{(a, b) \in k^2 \mid \varphi(a, b) = 0\}$ for $\varphi \in k[X, Y]$. This is easily checked, since A is Noetherian.

c. Let A = k[[X]], the formal power series ring over a field k. Then Spec $A = \{(0), (X)\}$. The closed sets are $\{(0), (X)\}$, $\{(X)\}$, and \emptyset . Hence, the closure of (0) is the whole space. Spec A is a topological space with two points which is not discrete.

§1.3 Rings of Fractions, the Case A_f

Let A be a ring. For any element f of A, define A_f to be A[X]/(fX - 1), where A[X] is the ring of polynomials over A. Letting $\psi_f(a) = a \mod(fX - 1)$ for $a \in A$, and $\xi = X \mod(fX - 1)$, one has the ring homomorphism