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Preface

This book is the expanded version of lectures on quantum mechanics, which au-
thor read for students of the graduate level and which have been published in
Russian. The main attention is given to the consecutive and consistent descrip-
tion of foundations of modern quantum mechanics. Difference of the suggested
book from others is consistent use of the functional analysis and operator alge-
bras. To read the text, preliminary knowledge of these sections of mathematics is
not required. All the necessary information, which is beyond usual courses of the
mathematical analysis and linear algebra, is included.

To describe the theory, we use the fact that quantum and classical mechanics
are connected not only by limiting transition, but also realized by identical mathe-
matical structures. A common basis to formulate the theory is an assumption that
classical and quantum mechanics are different representations of the same total-
ity of mathematical structures, i.e., the so-called Dirac correspondence principle.
For construction of quantum theory, we consider mathematical concepts that are
the general for Hamiltonian and non-Hamiltonian systems. Quantum dynamics
is described by the one-parameter semi-groups and the differential equations on
operator spaces and algebras. The Lie—Jordan algebraic structure, Liouville space
and superoperators are used. It allows not only to consistently formulate the evo-
lution of quantum systems, but also to consider the dynamics of a wide class of
quantum systems, such as the open, non-Hamiltonian, dissipative, and nonlinear
systems. Hamiltonian systems in pure states are considered as special cases of
quantum dynamical systems.

The closed, isolated and Hamiltonian systems are idealizations that are not ob-
servable and therefore do not exist in the real world. As a rule, any system is
always embedded in some environment and therefore it is never really closed or
isolated. Frequently, the relevant environment is in principle unobservable or is
unknown. This would render the theory of non-Hamiltonian and dissipative quan-
tum systems to a fundamental generalization of quantum mechanics. The quantum
theory of Hamiltonian systems, unitary evolution, and pure states should be con-
sidered as special cases of the generalized approach.

Usually the quantum mechanics is considered as generalization of classical me-
chanics. In this book the quantum mechanics is formulated as a generalization
of modern nonlinear dynamics of dissipative and non-Hamiltonian systems. The
quantization of equations of motion for dissipative and non-Hamiltonian classical
systems is formulated in this book. This quantization procedure allows one to de-
rive quantum analogs of equations with regular and strange attractors. The regular



vi Preface

attractors are considered as stationary states of non-Hamiltonian and dissipative
quantum systems. In the book, the quantum analogs of the classical systems with
strange attractors, such as Lorenz and Rossler systems, are suggested. In the text,
the main attention is devoted to non-Hamiltonian and dissipative systems that
have the wide possibility to demonstrate the complexity, chaos and self-organi-
zation.

The text is self-contained and can be used without introductory courses in quan-
tum mechanics and modern mathematics. All the necessary information, which
is beyond undergraduate courses of the mathematics, is presented in the book.
Therefore this book can be used in the courses for graduate students. In the book
the modern structure of the quantum theory and new fundamental results of last
years are described. Some of these results are not considered in monographs and
text books. Therefore the book is supposed to be useful for physicists and mathe-
maticians who are interested in the modern quantum theory, nonlinear dynamics,
quantization and chaos.

The book consists of two interconnected parts. The first part is devoted to the
quantum kinematics that defines the properties of quantum observable, states and
expectation values. In the second part, we consider the quantum dynamics that
describes the time evolution of the observables and states.

Quantum mechanics has its mathematical language. It consists of the operator
algebras, functional analysis, theory of one-parameter semi-groups and operator
differential equations. Although we can have some sort of understanding of quan-
tum mechanics without knowing its mathematical language, the precise and deep
meaning of the physical notions cannot be obtained without using operator alge-
bras, functional analysis, etc. Many theorems of operator algebra and functional
analysis, etc. are easy to understand and use, although their proofs may be quite
technical and time-consuming to present. Therefore we explain the meaning and
significance of the theorems and ask reader to use them without proof.

The author is greatly indebted to Professor George M. Zaslavsky for his invalu-
able suggestions and comments. Thanks are expressed also to Edward E. Boos,
Vyacheslav A. Ilin, Victor 1. Savrin, Igor V. Volovich, colleagues of THEP di-
vision, and my family for their help and invaluable support during the work on
the book. Finally, the author wishes to express his appreciation to Elsevier for the
publication of this book.

Vasily E. Tarasov
Moscow
September 2007
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A Very Few Preliminaries

To motivate the introduction of the basic concepts of the theory of non-Hamilto-
nian and dissipative systems, we begin with some definitions.

1. Potential and conservative systems

Suppose that a classical system, whose position is determined by a vector x in a
region M of n-dimensional phase-space R", moves in a field F(x). The motion
of the system is described by the equation

dx

— =F. (1)

Let us give the basic definitions regarding this system.

(1) If the vector field F(x) satisfies the condition
curl F(x) =0

for all x € M, then the system is called potential, or locally potential. The
field F(x) is called irrotational.
(2) If there is a unique single-valued function H = H (x) for all x € M such that

F(x) = grad H (x),

then the system is gradient, or globally potential.

The globally potential system is locally potential. The converse statement
does not hold in general. It is well known that a locally potential system with
the field F = (—y/r2)e1 + (x/r?)ey, where r*? = x2 + y? in the region
M= {(x,y) € RZ: (x, y) # (0, 0)} is not globally potential.

(3) If there are x € M C R” such that

curl F(x) # 0,

then the system is called nonpotential.
(4) If we have the condition

divF(x) =0

for all x € M, then the system is called nondissipative. The vector field F(x)
is called solenoidal.



2 A Very Few Preliminaries

2. Hamiltonian and non-Hamiltonian classical systems

Let M be a symplectic manifold and let x = (g, p).

(1) The locally potential system on M is called locally Hamiltonian.

(2) The globally potential system on M is called globally Hamiltonian.

(3) The nonpotential system on M is called non-Hamiltonian.

(4) If divF(x) # 0O for some x € M, then the system is called generalized dissi-
pative.

3. Examples of non-Hamiltonian systems

Suppose that a classical system, whose position and momentum are described

by vectors ¢ = (ql, ...,qn) and p = (p1,..., pn), moves in the force field
F(q, p) = (F1, ..., Fy). The motion of the system is defined by the equations
dgr  dH(q, p) dpy dH(q, p)
= = e, — =——— "+ Fi(q, p). 2
7 e 7 o (g, p) 2

The Hamiltonian function H(q, p) = p?/2m + U(q) gives the Newton’s equa-
tions

g __3U(g)
dr? g
where v = dgq/dt. If the conditions
0Filg.p) _ dFx(q, p) 9Fi(g, p)
opi ’ dq1 dq1

hold for all ¢, p, then equations (2) describe a classical Hamiltonian system. If
these conditions are not satisfied, then (2) is a non-Hamiltonian system. If

+ Fi(q, mv),

=0 3)

Z d0F(q, p)

2(q, p) = 3
k=1 Dk

#0,

then we have a generalized dissipative system. For example, the force field

Fr(q, p) = Zaklpr + Z bis pi ps 4

Lis=1

describes non-Hamiltonian system.

Suppose that H(q, p) = p*/2m and Fi(q, p) is defined by (4). Using the
variables x = p;, y = p2, z = p3, we can obtain the well-known Lorenz and
Rassler systems in the space of (x, v, z) € R3. The field

Fy=—ox+oy, Fr=rx—y—xz, F3 = —bz + xy,
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gives the Lorenz equations [100]. All o, r, b > 0, but usually o0 = 10, b = 8/3
and r is varied. This system exhibits chaotic behavior for r = 28. The field

Fil=-y—-z F, =x+ay, Fs=b+cz—27x

defines the Rossler system [128]. Rossler studied the chaotic attractor with a =
0.2, b = 0.2, and ¢ = 5.7. These Lorenz and Rossler systems defined by equa-
tions (2) and (4) are non-Hamiltonian and dissipative. The systems demonstrate a
chaotic behavior for some values of parameters.

4. Non-Hamiltonian and dissipative classical systems
Let A = A(x) be a smooth function on M. Equation (1) gives

d
EA = (F,grad A), ®)

where the brackets is a scalar product. We can define the operator £ = (F, Vy),
where Vy is the nabla operator.

(1) For globally Hamiltonian systems, £ is an inner derivation operator, i.e.,
there is H € M such that

where { , }is a Poisson bracket, and H is a unique single-valued function on M.
(2) A locally Hamiltonian system is characterized by the conditions

Zp(A,B) = L(AB) — (CA)B — A(LB) =0, (7)
Je(A,B) = L({A, BY) — {LA, B} —{A,LB} =0 8)

for all real-valued smooth functions A = A(x) and B = B(x) on M. Equa-
tions (7) and (8) can be used as a definition of locally Hamiltonian systems.

These equations mean that £ is a derivation operator. In general, the derivation
operator is not inner. For example, every derivation £ of polynomial A in real
variables g, p can be presented in the form

0A 0A
LA={H A} +b|A—ap— — (1 —a)g— ),
ap aq

where a, b are numbers. Thus every derivation of polynomial is a sum of an in-
ner derivation {H, A} and an explicitly determined outer derivation. (However
this decomposition is not unique.) As a result, locally Hamiltonian system is not
equivalent to globally Hamiltonian.

(3) For non-Hamiltonian systems, there exist functions A(x) and B(x) and
points x, such that equations (6) and (7) are not satisfied. We can use this property
as a definition of classical non-Hamiltonian systems.



