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PREFACE

The success of the first edition and the desire to reflect the exciting advances of ana-
log electronics have provided the motivation for a major revision of the book. The
primary objective continues to be the illustration of general analog principles and
design methodologies using practical devices and applications; however, consider-
able effort has been made to enhance the pedagogy of the book as well as to reflect
current technological developments and practices.

The principal features of the new edition are as follows.

1. Enhanced pedagogy. The revision contains 176 worked examples and 526 end-
of-chapter problems, many of which are design-oriented. Greater emphasis has
been placed on the loop gain 7 as a gauge for assessing the performance level of
a circuit. Complex-plane systems concepts have been covered more deeply.

2. PSpice simulation. Recognizing that circuit simulation by computer has become
an indispensable verification tool both in analysis and design, we emphasize the
use of PSpice® and its Probe® post-processor as a form of software oscilloscope
for a rapid test of such critical issues as stability and the effects of device non-
idealities. (PSpice and Probe are trademarks of the Microsim Corporation.)

3. Expanded subject coverage. The revision includes more recent material, such
as current-feedback amplifiers and sigma-delta converters, along with topics that
were absent from the first edition, such as switching regulators and phase-locked
loops.

The book is intended as a textbook for undergraduate and graduate courses in
design and applications with analog integrated circuits (analog ICs), as well as a ref-
erence book for practicing engineers. The reader is expected to have had an introduc-
tory course in electronics, to be conversant in frequency-domain analysis techniques,
and to possess basic skills in the use of PSpice. Though the book contains enough ma-
terial for a two-semester course, it can also serve as basis for a one-semester course
after suitable selection of topics. The selection process is facilitated by the fact that
the book as well as its individual chapters have generally been designed to proceed
from the elementary to the complex.

At San Francisco State University we use the book for a one-semester senior
course that students take concurrently with a course in analog IC design and fab-
rication. For an effective utilization of analog ICs, it is important that the user be
cognizant of their internal workings, at least qualitatively. To serve this need, the
book provides intuitive explanations of the technological and circuital factors inter-
vening in a design decision.

The Web Site

We exploit the availability of modern communications tools to provide a forum
for the exchange of analog-design ideas related to the book. To this end, we are
maintaining a Web site at http://www.mhhe.com/franco, where the reader can find
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updates, downloadable software referenced in the book, and information at?opt ana-
log IC manufacturers and seminar events. Students, instructors, and practicing en-
gineers alike—and not necessarily in that order—are encouraged to contribute new
design ideas and problems, design projects, and whatever information will help make
the book a dynamically evolving aid for the benefit of its entire readership. The au-
thor welcomes feedback also via e-mail, at sfranco@sfsu.edu.

The Contents at a Glance

Although not explicitly indicated, the book consists of three parts: part I (Chap-
ters 1-4) introduces fundamental concepts and applications based on the op amp as
a predominantly ideal device. We feel that the student needs to develop sufficient
confidence with ideal (or near-ideal) op amp situations before being able to appre-
ciate the consequences of practical device limitations. Limitations are the subject
of part II (Chapters 5-8), which covers the topic in more systematic detail than the
first edition. Finally, part III (Chapters 9—13) exploits the maturity and judgment de-
veloped by the student in the first two parts to address a variety of design-oriented
applications. Following is a brief chapter-by-chapter description of the material cov-
ered.

Chapter 1 reviews basic amplifier concepts, including negative feedback. Much
emphasis is placed on the loop gain T as a gauge of circuit performance. The stu-
dent is introduced to simple PSpice models, which become more sophisticated as we
progress through the book.

Chapter 2 deals with I-V, V-I, and I-I converters, along with various instru-
mentation and transducer amplifiers. The present edition places greater emphasis on
feedback topologies and the role of the loop gain 7.

Chapter 3 covers first-order filters, audio filters, and popular second-order fil-
ters such as the KRC, multiple-feedback, state-variable, and biquad topologies. The
chapter emphasizes complex-plane systems concepts, and concludes with filter sen-
sitivities.

The reader who wants to go deeper into the subject of filters will find Chapter 4
useful. This chapter covers higher-order filter synthesis using both the cascade and
the direct approaches. Moreover, these approaches are presented both for the case of
active RC filters and the case of switched-capacitor (SC) filters.

Chapter 5 addresses input-referrable op amp errors such as Vg, I, Ips, CMRR,
PSRR, and drift, along with operating limits. The student is introduced to data-sheet
interpretation, and also to different technologies and topologies.

Chapter 6 addresses dynamic limitations in both the frequency and time do-
mains, and investigates their effect on the resistive circuits and the filters that were
studied in part I using mainly ideal op amp models. Voltage-feedback and current-
feedback are compared in detail, and PSpice is used extensively to visualize both
the frequency and transient responses of significant circuits.

The subject of ac noise, covered in Chapter 7, follows naturally since it com-
bines the principles learned in Chapters 5 and 6. Noise calculations and estimation
represent another area in which PSpice proves a most useful tool.
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Part II concludes with the subject of stability, in Chapter 8. Compared to the
first edition, the material has been rearranged to facilitate topic selection and puts
greater emphasis on a systems-oriented approach. Again, PSpice is used profusely
to visualize the effect of the different frequency-compensation techniques presented
in this chapter.

Part III begins with nonlinear applications, in Chapter 9. Here, nonlinear be-
havior stems from either the lack of feedback (voltage comparators) or the presence
of feedback, but of the positive type (Schmitt triggers), or the presence of negative
feedback, but using nonlinear elements such as diodes and switches (precision rec-
tifiers, peak detectors, track-and-hold amplifiers).

Chapter 10 covers signal generators, including Wien-bridge and quadrature os-
cillators, multivibrators, timers, function generators, and V-F and F-V converters.

Chapter 11 addresses regulation. In this edition, voltage references and linear
voltage regulators have been combined into a single chapter. Moreover, the material
has been expanded to include basic switching regulators.

Chapter 12 deals with data conversion. Data-converter specifications are now
treated more systematically, more applications with multiplying DACs are covered,
and the material has been expanded to include oversampling-conversion principles
and sigma-delta converters.

Chapter 13 concludes the book with a variety of nonlinear circuits, such as
log/antilog amplifiers, analog multipliers, and operational transconductance ampli-
fiers with a brief exposure to g,,-C filters. The material has been expanded with the
inclusion of phase-locked loops.
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Appendix 1A

The term operational amplifier, or op amp for short, was coined in 1947 by John R.
Ragazzini to denote a special type of amplifier that, by proper selection of its external
components, could be configured for a variety of operations such as amplification, ad-
dition, subtraction, differentiation, and integration. The first applications of op amps
were in analog computers. The ability to perform mathematical operations was the
result of combining high gain with negative feedback.

Early op amps were implemented with vacuum tubes, so they were bulky,
power-hungry, and expensive. The first dramatic miniaturization of the op amp came
with the advent of the bipolar junction transistor (BJT), which led to a whole gener-
ation of op amp modules implemented with discrete BJTs. However, the real break-
through occurred with the development of the integrated circuit (IC) op amp, whose
elements are fabricated in monolithic form on a silicon chip the size of a pinhead.
The first such device was developed by Robert J. Widlar at Fairchild Semiconductor
Corporation in the early 1960s. In 1968 Fairchild introduced the op amp that was to
become the industry standard, the popular pA741. Since then the number of op amp

1



2 CHAPTER 1: Operational Amplifier Fundamentals

families and manufacturers has swollen considerably. Nevertheless, the 741 remains
one of the most popular types in spite of competition from devices of comparable cost
but superior performance. Because of its enduring popularity and the fact that it is
the most widely documented op amp in the literature, we shall use it as a vehicle
to illustrate general op amp principles and also as a yardstick to assess the relative
merits of other op amp families. However, we shall not hesitate to turn to other op
amp types if they prove better suited to the application at hand.

Op amps have made lasting inroads into virtually every area of analog and
mixed analog-digital electronics. Such widespread use has been aided by dramatic
price drops. Today, the cost of an op amp that is purchased in volume quantities
can be comparable to that of more traditional and less sophisticated components
such as trimmers, quality capacitors, and precision resistors. In fact, the prevail-
ing attitude is to regard the op amp as just another component, a viewpoint that
has had a profound impact on the way we think of analog circuits and design them
today.

The internal circuit diagram of the 741 op amp is shown in Fig. 5A.2 of the
Appendix at the end of Chapter 5. The circuit may be intimidating, especially if
your understanding of BJTs is not sufficiently deep. Be reassured, however, that it is
possible to design a great number of op amp circuits without a detailed knowledge of
the op amp’s inner workings. Indeed, in spite of its internal complexity, the op amp
lends itself to a black-box representation with a very simple relationship between
output and input. We shall see that this simplified schematization is adequate for a
great variety of situations. When it is not, we shall turn to the data sheets and predict
circuit performance from specified data, again avoiding a detailed consideration of
the inner workings.

To promote their products, op amp manufacturers maintain applications depart-
ments with the purpose of identifying areas of application for their products and
publicizing them by means of application notes and articles in trade journals. You
are encouraged to start building your own reference library of linear data books and
application notes. Browse through them in your spare time, and you will be amazed
by the wealth of information they provide. For your convenience, we maintain an
updated list of the major op amp manufacturers. This list can be accessed by visiting
the Web site at http://www.mhhe.com/franco.

This study of op amp principles should be corroborated by practical experimen-
tation. You can either assemble your circuits on a protoboard and try them out in
the lab, or you can simulate them with a personal computer using any of the various
CAD/CAE packages available, such as SPICE. For best results, you may wish to do
both.

After reviewing basic amplifier concepts, this chapter introduces the op amp as
well as analytical techniques suitable for investigating a variety of basic op amp cir-
cuits. Central to the operation of these circuits is the concept of negative feedback.
In particular, the reader is introduced to the concept of loop gain as the most impor-
tant characteristic of negative-feedback circuits. The chapter concludes with some
practical considerations, such as op amp powering, output saturation, and internal
power dissipation.
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1.1 AMPLIFIER FUNDAMENTALS

Before embarking on the study of the operational amplifier, it is worth reviewing
the fundamental concepts of amplification and loading. Recall that an amplifier is a
two-port device that accepts an externally applied signal, called input, and generates
a signal called output such that output = gain X input, where gain is a suitable
proportionality constant. A device conforming to this definition is called a linear
amplifier to distinguish it from devices with nonlinear input-output relationships,
such as quadratic and log/antilog amplifiers. Unless stated to the contrary, the term
amplifier will here signify linear amplifier.

An amplifier receives its input from a source upstream and delivers its output
to a load downstream. Depending on the nature of the input and output signals, we
have different amplifier types. The most common is the voltage amplifier, whose in-
put v; and output vy are voltages. Each port of the amplifier can be modeled with a
Thévenin equivalent, consisting of a voltage source and a series resistance. The in-
put port usually plays a purely passive role, so we model it with just a resistance R;,
called the input resistance of the amplifier. The output port is modeled with a voltage-
controlled voltage source (VCVS) to signify the dependence of vp on v, along
with a series resistance R, called the output resistance. The situation is depicted in
Fig. 1.1, where A, is called the voltage gain factor and is expressed in volts per
volt. Note that the input source is also modeled with a Thévenin equivalent consist-
ing of the source vy and series resistance Ry; the output load, playing a passive role,
is modeled with a mere resistance R;.

We now wish to derive an expression for vg in terms of vs. Applying the voltage
divider formula at the output port yields

Vo = &%;AOCV[ (11)
‘We note that in the absence of any load (R, = ) we would have vp = A,.v;. Hence,
Ay is called the unloaded, or open-circuit, voltage gain. Applying the voltage di-
vider formula at the input port yields

v = 5 Vs (1.2)
R; + R;
Eliminating v; and rearranging, we obtain the source-to-load gain,
Vo R,‘ RL

Yo A
Vs R + R; ocRg-i—RL (h3)

Source Voltage amplifier Load FIGURE 1.1
Voltage amplifier.
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As the signal progresses from source to load, it undergoes first some attenuation at
the input port, then magnification by Aq. inside the amplifier, and finally additional
attenuation at the output port. These attenuations are referred to as loading. It is
apparent that because of loading, Eq. (1.3) gives [vo/vs| = |Aqc|-

EXAMPLE 1.1. (a) An amplifier with R; = 100kQ, A,c = 100 V/V,and R, = 1 is
driven by a source with R; = 25 k() and drives a load R, = 3 (). Calculate the overall
gain as well as the amount of input and output loading. (b) Repeat, but for a source with
R; = 50k and a load R; = 4 ). Compare.

Solution. (a) By Eq. (1.3), the overall gain is vo/vs = [100/(25 + 100)] X 100 X
3/(1 + 3) = 0.80 X 100 X 0.75 = 60 V/V, which is less than 100 V/V because
of loading. Input loading causes the source voltage to drop to 80% of its unloaded
value; output loading introduces an additional drop to 75%. (b) By the same equation,
volvs = 0.67 X 100Xx0.80 = 53.3 V/V. We now have more loading at the input but less
loading at the output. Moreover, the overall gain has changed from 60 V/V to 53.3 V/V.

<

Loading is generally undesirable because it makes the overall gain dependent
on the particular input source and output load, not to mention gain reduction. The
origin of loading is obvious: when the amplifier is connected to the input source,
R; draws current and causes R; to drop some voltage. It is precisely this drop that,
once subtracted from vg, leads to a reduced voltage v;. Likewise, at the output port
the magnitude of vy is less than the dependent-source voltage A,.v; because of the
voltage drop across R,.

If loading could be eliminated altogether, we would have vo/vs = Ao regard-
less of the input source and the output load. To achieve this condition, the voltage
drops across R and R, must be zero regardless of R; and R;.. The only way to achieve
this is by requiring that our voltage amplifier have R; = © and R, = 0. For obvious
reasons such an amplifier is termed ideal. Though these conditions cannot be met in
practice, an amplifier designer will strive to approximate them as closely as possible
by ensuring that R; > R, and R, << R, for all input sources and output loads that
the amplifier is likely to be connected to.

Another popular amplifier is the current amplifier. Since we are now dealing
with currents, we model the input source and the amplifier with Norton equivalents,
as in Fig. 1.2. The parameter Ay of the current-controlled current source (CCCS)
is called the unloaded, or short-circuit, current gain. Applying the current divider

Source Current amplifier Load
] k T TS T
| ' o . 00— I
: : —_ | I —s |
I I \ |
I | I | . < |
s R, | i | R; Agly R, | ip | <R
I I | I |
I I | I : I
| 1 A 1 | P | |
| ! I [ ~ | I
b . [ P S P 4 [ 1
FIGURE 1.2

Current amplifier.



1.2 The Operational Amplifier 5

TABLE 1.1
Basic amplifiers and their ideal terminal resistances

Input Output Amplifier type Gain R; R,
v Vo Voltage VIV 00 0
i io Current A/A 0 00
vy io Transconductance ANV o o0
i Vo Transresistance V/A 0 0
formula twice yields the source-to-load gain,
] R R
L T ... (1.4)

is R+ R “R,+RL

We again witness loading both at the input port, where part of ig is lost through Ry,
making i; less than ig, and at the output port, where part of Agi; is lost through R,.
Consequently, we always have |ip/is| = |As|. To eliminate loading, an ideal current
amplifierhas R; = Oand R, = o, exactly the opposite of the ideal voltage amplifier.

An amplifier whose input is a voltage v; and whose output is a current i is called
a transconductance amplifier because its gain is in amperes per volt, the dimensions
of conductance. The situation at the input port is the same as that of the voltage
amplifier of Fig. 1.1; the situation at the output port is similar to that of the current
amplifier of Fig. 1.2, except that the dependent source is now a voltage-controlled
current source (VCCS) of value A vy, with Ay in amperes per volt. To avoid loading,
an ideal transconductance amplifier has R; = «© and R, = .

Finally, an amplifier whose input is a current #; and whose output is a voltage
vo is called a transresistance amplifier; and its gain is in volts per ampere. The input
port appears as in Fig. 1.2, and the output port as in Fig. 1.1, except that we now
have a current-controlled voltage source (CCVS) of value Ayci;, with Ay in volts
per ampere. Ideally, such an amplifier has R; = 0 and R, = 0, the opposite of the
transconductance amplifier.

The four basic amplifier types, along with their ideal input and output resis-
tances, are summarized in Table 1.1.

1.2 THE OPERATIONAL AMPLIFIER

The operational amplifier is a voltage amplifier with extremely high gain. For ex-
ample, the popular 741 op amp has a typical gain of 200,000 V/V, also expressed as
200 V/mV. The OP-77, a more recent type, has a gain of 12 million V/V, or 12 V/WwV.
In fact, what distinguishes op amps from all other voltage amplifiers is the size of
their gain. In the next sections we shall see that the higher the gain the better, or
that an op amp would ideally have an infinitely large gain. Why one would want
gain to be extremely large, let alone infinite, will become clearer as soon as we start
analyzing our first op amp circuits.



