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Introduction

This short book gives an introduction to algebraic and abelian functions, with
emphasis on the complex analytic point of view. It could be used for a course
or seminar addressed to second year graduate students.

The goal is the same as that of the first edition, although I have made a
number of additions. I have used the Weil proof of the Riemann-Roch the-
orem since it is efficient and acquaints the reader with adeles, which are a very
useful tool pervading number theory.

The proof of the Abel-Jacobi theorem is that given by Artin in a seminar
in 1948. As far as I know, the very simple proof for the Jacobi inversion
theorem is due to him. The Riemann-Roch theorem and the Abel-Jacobi
theorem could form a one semester course.

The Riemann relations which come at the end of the treatment of Jacobi’s
theorem form a bridge with the second part which deals with abelian functions
and theta functions. In May 1949, Weil gave a boost to the basic theory of
theta functions in a famous Bourbaki seminar talk. I have followed his
exposition of a proof of Poincaré that to each divisor on a complex torus there
corresponds a theta function on the universal covering space. However, the
correspondence between divisors and theta functions is not needed for the
linear theory of theta functions and the projective embedding of the torus
when there exists a positive non-degenerate Riemann form. Therefore I have
given the proof of existence of a theta function corresponding to a divisor only
in the last chapter, so that it does not interfere with the self-contained treat-
ment of the linear theory.

The linear theory gives a good introduction to abelian varieties, in an
analytic setting. Algebraic treatments become more accessible to the reader
who has gone through the easier proofs over the complex numbers. This
includes the duality theory with the Picgrd, or dual, abelian manifold.



vi Introduction

I have included enough material to give all the basic analytic facts neces-
sary in the theory of complex multiplication in Shimura-Taniyama, or my
more recent book on the subject, and have thus tried to make this topic
accessible at a more elementary level, provided the reader is willing to
assume some algebraic results.

I'have also given the example of the Fermat curve, drawing on some recent
results of Rohrlich. This curve is both of intrinsic interest, and gives a typical
setting for the general theorems proved in the book. This example illustrates
both the theory of periods and the theory of divisor classes. Again this
example should make it easier for the reader to read more advanced books and
papers listed in the bibliography.

New Haven, Connecticut SERGE LANG
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CHAPTER I
The Riemann-Roch Theorem

§1. Lemmas on Valuations

We recall that a discrete valuation ring o is a principal ideal ring (and there-
fore a unique factorization ring) having only one prime. If ¢ is a generator
of this prime, we call  a local parameter. Every element x # 0 of such a
ring can be expressed as a product

x=1y,

where r is an integer = 0, and y is a unit. An element of the quotient field
K has therefore a similar expression, where r may be an arbitrary integer,
which is called the order or value of the element. If r > 0, we say that x
has a zero at the valuation, and if r < 0, we say that x has a pole. We write

r = vy(x), or v(x), or ord,(x).

Let p be the maximal ideal of 0. The map of K which is the canonical map
0 — 0/p on 0, and sends an element x & D to oo, is called the place of the
valuation.

We shall take for granted a few basic facts concerning valuations, all of
which can be found in my Algebra. Especially, if E is a finite extension of
K and o is a discrete valuation ring in K with maximal ideal p, then there
exists a discrete valuation ring © in E, with prime 8, such that

"0=0NK and p=FNK.

If u is a prime element of ©, then 1O = u*O, and e is called the ramifica-
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tion index of © over 0 (or of B over p). If I'g and I, are the value groups
of these valuation rings, then (g : [')) = e.

We say that the pair (,%9) lies above (0,p), or more briefly that B lies
above p. We say that (O,B) is unramified above (0,p), or that  is
unramified above p, if the ramification index is equal to 1, that is e = 1.

Example. Let k be a field and ¢ transcendental over k. Leta € k. Let 0
be the set of rational functions

f(O)g(n, with f(1), g(5) € kif} such that g(a) # 0.

Then o is a discrete valuation ring, whose maximal ideal consists of all such
quotients such that f(a) = 0. This is a typical situation. In fact, let k be
algebraically closed (for simplicity), and consider the extension k(x) obtained
with one transcendental element x over k. Let 0 be a discrete valuation ring
in k(x) containing k. Changing x to 1/x if necessary, we may assume that
x € 0. Then p N k[x] # 0, and p N k{x] is therefore generated by an irre-
ducible polynomial p(x), which must be of degree 1 since we assumed k
algebraically closed. Thus p(x) = x — a for some a € k. Then it is clear
that the canonical map

0— o/fp
induces the map
[~ fl@

on polynomials, and it is then immediate that 0 consists of all quotients
f(x)/g(x) such that g(a) # O; in other words, we are back in the situation
described at the beginning of the example.

Similarly, let 0 = k{{#]] be the ring of formal power series in one variable.
Then 0 is a discrete valuation ring, and its maximal ideal is generated by 1.
Every element of the quotient field has a formal series expansion

X=a "+ ta gt tarart+att+

with coefficients a; € k. The place maps x on the value g if x does not have
a pole.

In the applications, we shall study a field K which is a finite extension of
a transcendental extension k(x), where k is algebraically closed, and x is
transcendental over k. Such a field is called a function field in one variable.
If that is the case, then the residue class field of any discrete valuation ring
0 containing k is equal to k itself, since we assumed k algebraically closed.

Proposition 1.1. Let E be a finite extension of K. Let (0,B) be a discrete
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valuation ring in E above (0,p) in K. Suppose that E = K(y) where y is
the root of a polynomial f(Y) = 0 having coefficients in 0, leading coeffi-
cient 1, such that

F(N =0 but f'(y)#0modB.
Then B is unramified over p.

Proof. There exists a constant y, € k such that y =y, mod . By
hypothesis, f'(y) ¥ 0 mod . Let {y.} be the sequence defined recur-
sively by

Yas1 = Yn —f,()'n)_]f()’n)-

Then we leave to the reader the verification that this sequence converges in
the completion K, of K, and it is also easy to verify that it converges to the
root y since y = yo mod B but y is not congruent to any other root of f and
8. Hence y lies in this completion, so that the completion Eg is embedded
in K;, and therefore B is unramified.

We also recall some elementary approximation theorems.

Chinese Remainder Theorem. Let R be a ring, and let Py, . . . , P, be
distinct maximal ideals in that ring. Given positive integersry, . . . , I
and elements ay, . . . , a, € R, there exists x € R satisfying the con-
gruences

x =a;mod pf* foralli.

For the proof, cf. Algebra, Chapter I, §2. This theorem is applied to the
integral closure of k[x] in a finite extension.

We shall also deal with similar approximations in a slightly different
context, namely a field X and a finite set of discrete valuation rings oy, . . . ,
0, of K, as follows.

Proposition 1.2. If 0, and 0, are two discrete valuation rings with quotient
field K, such that 0, C 0,, then 0, = 0,.

Proof. We shall first prove that if p, and p, are their maximal ideals, then
P, Cpy. Lety €p,. If y € py, then 1/y € 0,, whence 1/y € p,, a con-
tradiction. Hence p, C p,. Every unit of 0, is a fortiori a unit of 0;. An
element y of p, can be written y = arj'u where u is a unit of 0, and , is an
element of order 1 in p,. If m is not in P, it is a unit in 0,, a contradiction.
Hence m is in P, and hence so is p, = 0,7. This proves p, = p,. Finally,
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if u is a unit in 0,, and is not in 0,, then 1/u is p;, and thus cannot be a unit
in 0,. This proves our proposition.

From now on, we assume that our valuation rings 0;(i = 1, . . . , n) are
distinct, and hence have no inclusion relations.

Proposition 1.3. There exists an element y of K having a zero at 0, and
apoleato;(j=2,...,n).

Proof. This will be proved by induction. Suppose n = 2. Since there is
no inclusion relation between 0, and 9;, we can find y € 0, and y €& 0,.
Similarly, we can find z € 0, and z € 0,. Then z/y has a zero at 0, and a
pole at 0, as desired.

Now suppose we have found an element y of K having a zero at 0; and a
pole at 0z, . . . , D,—). Let z be such that z has a zero at 0, and a pole at 0,.
Then for sufficiently large r, y + z” satisfies our requirements, because we
have schematically zero plus zero = zero, zero plus pole = pole, and the
sum of two elements of K having poles of different order again has a pole.

A high power of the element y of Proposition 1.3 has a high zero at o, and
a high pole at o; (j =2, ..., n). Adding 1 to this high power, and
considering 1/(1 + y") we get

Corollary. There exists an element z of K such that z — 1 has a high zero
at 0;, and such that z has a high zeroat 0; (j =2, .. ., n).

Denote by ord; the order of an element of K under the discrete valuation
associated with 0, We then have the following approximation theorem.

Theorem 1.4. Given elements a,, . . . , a, of K, and an integer N, there
exists an element y € K such that ord;(y — a;) > N.

Proaf. For each i, use the corollary to get z; close to 1 at 0; and close to
0 at o; (j # i), or rather at the valuations associated with these valuation

rings. Then z,a; + - - - + 2,4, has the required property.

In particular, we can find an element y having given orders at the valua-
tions arising from the o;. This is used to prove the following inequality.

Corollary. Let E be a finite algebraic extension of K. Let T be the value
group of a discrete valuation of K, and T; the value groups of a finite
number of inequivalent discrete valuations of E extending that of K. Let
¢; be the index of T in T';. Then

Y e =[E:K].
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Proof. Select elements

)’n,---,)'u.,---,)’m---,yn,

of E such thaty;,, (v =1, . . ., e;) represent distinct cosets of I" in I';, and
have zeroes of high order at the other valuations v; (j # i). We contend that
the above elements are linearly independent over K. Suppose we have a
relation of linear dependence

>, iy = 0.

iy

Say ¢, has maximal value in T, that is, v(cy;) = v(c,) all i, v. Divide the
equation by ¢;;. Then we may assume that ¢;; = 1, and that v(c;,) = 1.
Consider the value of our sum taken at v;. All terms yy, Cia Y12y « - - + Cle, Yie,
have distinct values because the y’s represent distinct cosets. Hence

nilyn + * * * + € Yiey) 2 01(n).

On the other hand, the other terms in our sum have a very small value at
v by hypothesis. Hence again by that property, we have a contradiction,
which proves the corollary.

§2. The Riemann-Roch Theorem

Let k be an algebraically closed field, and let X be a function field in one
variable over k (briefly a function field). By this we mean that X is a finite
extension of a purely transcendental extension k(x) of k, of transcendence
degree 1. We call k the constant field. Elements of K are sometimes called
functions.

By a prime, or point, of K over k, we shall mean a discrete valuation ring
of K containing k (or over k). As we saw in the example of §1, the residue
class field of this ring is then k itself. The set of all such discrete valuation
rings (i.e., the set of all points of K') will be called a curve, whose function
fieldis K. We use the letters P, Q for points of the curve, to suggest geometric
terminology.

By a divisor (on the curve, or of K over k) we mean an element of the free
abelian group generated by the points. Thus a divisor is a formal sum.

a=2n,~P,-=2nPP

where P, are points, and #; are integers, all but a finite number of which are
0. We call
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Zni=§nl’

the degree of a, and we call n; the order of a at P,.

If x € K and x # O, then there is only a finite number of points P such that
orde x # 0. Indeed, if x is constant, then ordp(x) = O for all P. If x is not
constant, then there is one point of k(x) at which x has a zero, and one point
at which x has a pole. Each of these points extends to only a finite number
of points of K, which is a finite extension of k(x). Hence we can associate
a divisor with x, namely

@ = nP

where np = ordp(x). Divisors a and b are said to be linearly equivalent if
a — Dbis the divisor of a function. If a = X npPand b = 3 m,P are divisors,
we write

az=b ifandonlyif np =ms forall P.

This clearly defines a (partial) ordering among divisors. We call a positive
ifaz0.

If a is a divisor, we denote by L (a) the set of all elements x € K such that
(x) 2 ~a. If a is a positive divisor, then L(a) consists of all the functions
in X which have poles only in a, with multiplicities at most those of a. It is
clear that L(a) is a vector space over the constant field k for any divisor a.
We let I{a) be its dimension.

Our main purpose is to investigate more deeply the dimension /(a) of the
vector space L(a) associated with a divisor a of the curve (we could say of
the function field).

Let P be a point of V, and 0 its local ring in K. Let p be its maximal ideal.
Since k is algebraically closed, o/p is canonically isomorphic to k. We know
that 0 is a valuation ring, belonging to a discrete valuation. Let f be a
generator of the maximal ideal. Let x be an element of 0. Then for some
constant g in k, we can write x = gy mod p. The functionx — gy isin p,
and has a zero at 0. We can therefore write x — ay = ty,, where y, is in 0.
Again by a similar argument we get y, = @, + ty, with y, € 0, and

X =ap + a;t + yt%
Continuing this procedure, we obtain an expansion of x into a power series,
Xx=ag+at +a*+ -,

It is trivial that if each coefficient a; is equal to O, then x = 0.
The quotient ficld X of 0 can be embedded in the power series field k((2))



