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Preface

Controllers are either designed in the frequency domain or time domain. When designed in
the frequency domain, it is a common practice that a transfer function is derived from the
corresponding governing equation of motion. Frequency response design methods, such as
bode plots and root loci, are usually employed for the design of frequency domain based
controllers. When designed in the time domain, the differential equation of the system is
described as a state space model by the associated state variables. The controllability and
observability of the design are then investigated using state feedback or other time domain
control laws. Controllers designed in either domain have their advantages. Controllers designed
in the frequency domain provide adequate performance with uncertainties. Estimating the
output phase and amplitude in response to a sinusoidal input is generally sufficient to design
a feedback controller, but the system has to be linear and stationary. Controllers designed in
the time domain can accommodate multiple inputs-outputs and correlate internal and external
states without considering the requirements in the frequency domain. Proven feasible for
linear, stationary systems, both types of controllers can only be applied independently either
in the frequency domain or the time domain.

For a linear time-invariant system, only the amplitude and phase angle of the input are
changed by the system. The output frequency remains the same as the input frequency, and
the system can be stabilized by applying a proper feedback gain. Both the time domain and
frequency domain responses are bounded at the same time. However, this is not the case for
the chaotic response generated by a nonlinear system. A chaotic response is naturally bounded
in the time domain while becoming unstably broadband in the frequency domain, containing
an infinite number of unstable periodic orbits of all periods in the phase portrait, called
strange attractors. It does not remain in one periodic orbit but switches rapidly between these
unstable periodic orbits. If the chaotic response is projected onto the Poincaré section, a lower
dimensional subspace transversal to the trajectory of the response, numerous intersection
points would be seen densely congregating and being confined within a finite area. This
unequivocally implies that the chaotic response is bounded within a specific range in the
time domain and dynamically deteriorates at the same time with a changing spectrum of
broad bandwidth as the trajectory switching rapidly between infinite numbers of unstable
periodic orbits. This phenomenon is prevalent in high-speed cutting operations where strong
nonlinearities including regenerative effects, frictional discontinuity, chip formation, and tool
stiffness are dominant.

For a nonlinear, nonstationary system, when it undergoes bifurcation to eventual chaos,
its time response is no longer periodic. Broadband spectral response of additional frequency
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components emerge as a result. Controllers designed in the time domain contain time-domain
error while being unable to restrain the increasing bandwidth. On the other hand, controllers
designed in the frequency domain restrict the bandwidth from expanding while losing control
over the time domain error. Neither frequency domain nor time domain based controllers
are sufficient to address aperiodic response and route-to-chaos. This is further asserted by the
uncertainty principle, which states that the resolution in the time- and frequency-domain cannot
be reached arbitrarily. However, as Parseval’s Theorem implies that the energies computed in
the time- and frequency-domains are interchangeable, it is possible to incorporate and meet
the time and frequency domain requirements together and realize the control of a nonlinear
response with reconciled, concurrent time-frequency resolutions.

The above is a concise version of what was on our mind when we contemplated many years
ago the following two questions: (1) Why is it that a dynamic response could be bounded
in the time domain while in the meantime becoming unstably broadband in the frequency
domain simultaneously? and (2) Why is it that the control of a nonlinear system has to be
performed in the simultaneous time-frequency domain to be viable and effective? The wavelet-
based time-frequency control methodology documented in this monograph is the embodiment
of our response to these particular questions.

The control methodology is adaptive in that it monitors and makes timely and proper
adjustments to improve its performance. Plant parameters in the novel control are identified
in real-time and are used to adjust and update the control laws according to the changing
system output. Its architecture is inspired by active noise control in which one FIR filter
identifies the system and another auto-adjustable FIR filter rejects the uncontrollable input.
Analysis wavelet filter banks are incorporated in the control configuration. The analysis filter
banks decompose both input and error signals before the controlled signal is synthesized. As
a dynamic response is resolved by the discrete wavelet transform into components at various
scales corresponding to successive octave frequencies, the control law is inherently built
in the joint time-frequency domain, thus facilitating simultaneous time-frequency control.
Unlike active noise control whose objective is to reduce acoustic noise, the wavelet-based
time-frequency control is designed to minimize the deterioration of the output signal in both
the time and frequency domains when the system undergoes bifurcated or chaotic motion so
as to restore the output response to periodic. These features together provide unprecedented
advantages for the control of nonlinear, nonstationary system response.

This book presents a sound foundation which engineering professionals, practicing and in
training alike, can rigorously explore to realize important progress in micro-manufacturing,
precision machine-tool design, and chatter control. Viable solution strategies can be formulated
drawing from the foundation to control cutting instability at high speed and to develop chatter-
free machine-tool concepts. Research professionals in the general areas of nonlinear dynamics
and nonlinear control will also find the volume informative in qualitative and quantitative
terms on how discontinuity and chaos can be adequately mitigated.

The discourse of Control of Cutting Vibration and Machining Instability is organized into
eleven chapters. The first chapter examines the coupled tool-workpiece interaction for a
better understanding of the instability and chatter in turning operation. The second chapter
is a brief review of the mathematical basics along with the common notations relevant to
the derivation of the wavelet-based nonlinear time-frequency control law in Chapter 7. The
third chapter reviews the essences of active noise control and the filtered-x LMS algorithm
that are incorporated in the time-frequency control as features for system identification and
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error reduction. The notion of time-frequency analysis is discussed in the fourth chapter. This
chapter presents several analysis tools important for the proper characterization of nonlinear
system responses. It also lays the fundamentals needed to comprehend wavelet filter banks
and the underlying concept of time-frequency resolution that are treated in the chapter that
follows, Chapter 5.

The philosophical basis on which the nonlinear time-frequency control is based is elab-
orated in greater detail in Chapter 6. Chapter 7 presents the time-frequency control theory
along with all the salient physical features that render chaos control feasible. The feasibility
is demonstrated in applications in Chapters 8 through 11 using examples from high-speed
manufacturing and friction-induced discontinuity. The last chapter, Chapter 11, explores an
alternative solution to mitigating chaos using the time-frequency control. The implication for
exploring synchronization of chaos to achieve suppressing self-sustained chaotic machining
chatter is emphasized.

Two working MATLAB® m-files by which all the results and figures in Chapters 10 and 11
are generated are listed in the Appendix. The one for the friction-induced instability control
in Chapter 10 has an extensive finite element coding section in it that utilizes several user-
defined MATLAB® functions in Simulink® for the calculation of the beam vibration. We
hope the examples will encourage the gaining of practical experience in implementing the
wavelet-based nonlinear time-frequency control methodology. Readers who are reasonably
familiar with the MATLAB® language and Simulink simulation tool should find the examples
extensive, complete, and easy to follow.

Since it was first conceived years ago, many talented individuals have come along and
helped evolve the core ideas of time-frequency control. Among them are Baozhong Yang,
who explored instantaneous frequency as the tool of preference for characterizing nonlinear
systems, and Achala Dassanayake, to whom we owe the comprehensive understanding of what
machining instability and chatter really are.

C. Steve Suh and Meng-Kun Liu
Texas A&M University, College Station, USA
February 2013



Contents

Preface ix
1 Cutting Dynamics and Machining Instability 1
1.1 Instability in Turning Operation 2
1.1.1 Impact of Coupled Whirling and Tool Geometry on Machining 3
1.2 Cutting Stability 10
1.3 Margin of Stability and Instability 12
1.4 Stability in Fine Cuts 23
1.5 Concluding Remarks 31
References 32
2 Basic Physical Principles 33
2.1 Euclidean Vectors 33
2.2 Linear Spaces 34
2.3 Matrices 36
2.3.1 Eigenvalue and Linear Transformation 37
24 Discrete Functions 38
24.1 Convolution and Filter Operation 39
242 Sampling Theorem 40
243 z-Transform 41
2.5 Tools for Characterizing Dynamic Response 42
2.5.1 Fourier Analysis 49
2.5.2 Wavelet Analysis 51
References 54
3 Adaptive Filters and Filtered-x LMS Algorithm 55
3.1 Discrete-Time FIR Wiener Filter 55
3.1.1 Performance Measure 56
3.1.2 Optimization of Performance Function 58
3.2 Gradient Descent Optimization 60
3.3 Least-Mean-Square Algorithm 62
34 Filtered-x LMS Algorithm 64

References 68



Contents

vi
4 Time-Frequency Analysis 71
4.1 Time and Frequency Correspondence 72
4.2 Time and Frequency Resolution 75
4.3 Uncertainty Principle 76
4.4 Short-Time Fourier Transform 77
4.5 Continuous-Time Wavelet Transform 79
4.6 Instantaneous Frequency 81
4.6.1 Fundamental Notions 82
4.6.2 Misinterpretation of Instantaneous Frequency 85
4.6.3 Decomposition of Multi-Mode Structure 90
4.6.4 Example of Instantaneous Frequency 94
4.6.5 Characteristics of Nonlinear Response 97
References 100
5 Wavelet Filter Banks 101
5.1 A Wavelet Example 101
5.2 Multiresolution Analysis 104
5.3 Discrete Wavelet Transform and Filter Banks 112
References 116
6 Temporal and Spectral Characteristics of Dynamic Instability 117
6.1 Implication of Linearization in Time-Frequency Domains 118
6.2 Route-to-Chaos in Time-Frequency Domain 125
6.3 Summary 134
References 134
7 Simultaneous Time-Frequency Control of Dynamic Instability 137
7.1 Property of Route-to-Chaos 137
7.1.1 OGY Control of Stationary and Nonstationary Hénon Map 139
7.1.2 Lyapunov-based Control of Stationary and Nonstationary
Duffing Oscillator 140
7.2 Property of Chaos Control 144
7.2.1 Simultaneous Time-Frequency Control 145
7.3 Validation of Chaos Control 155
References 162
8 Time-Frequency Control of Milling Instability and Chatter at High Speed 165
8.1 Milling Control Issues 165
8.2 High-Speed Low Immersion Milling Model 167
8.3 Route-to-Chaos and Milling Instability 168
8.4 Milling Instability Control 170
8.5 Summary 175
References 176
9 Multidimensional Time-Frequency Control of Micro-Milling Instability 177
9.1 Micro-Milling Control Issues 177
9.2 Nonlinear Micro-Milling Model 179



Contents

vii

9.3

9.4
9.5

10

10.1
10.2
10.3
10.4
10.5

11

11.1
11.2
11.3
11.4

Appendix: MATLAB® Programming Examples of Nonlinear Time-Frequency

Al

A2

Index

Multivariable Micro-Milling Instability Control
9.3.1 Control Strategy

Micro-Milling Instability Control

Summary

References

Time-Frequency Control of Friction Induced Instability
Issues with Friction-Induced Vibration Control

Continuous Rotating Disk Model

Dynamics of Friction-Induced Vibration

Friction-Induced Instability Control

Summary

References

Synchronization of Chaos in Simultaneous Time-Frequency Domain
Synchronization of Chaos

Dynamics of a Nonautonomous Chaotic System

Synchronization Scheme

Chaos Control

11.4.1  Scenario |

11.42  Scenario Il

Summary

References

Control

Friction-Induced Instability Control
A.l.l Main Program

A.1.2  Simulink® Model
Synchronization of Chaos

A.2.1 Main Program

A22 Simulink® Model

181
183
186
193
197

199
199
201
206
208
214
215

217
217
219
222
223
223
227
227
229

231
231
232
236
239
239
244

245



Cutting Dynamics and
Machining Instability

Material removal — as the most significant operation in manufacturing industry — is facing
the ever-increasing challenge of increasing proficiency at the micro and nano scale levels
of high-speed manufacturing. Fabrication of submicron size three-dimensional features and
freeform surfaces demands unprecedented performance in accuracy, precision, and productiv-
ity. Meeting the requirements for significantly improved quality and efficiency, however, are
contingent upon the optimal design of the machine-tools on which machining is performed.
Modern day precision machine-tool configurations are in general an integration of several
essential components including process measurement and control, power and drive, tooling
and fixture, and the structural frame that provides stiffness and stability. As dynamic instabil-
ity is inherently prominent and particularly damaging in high-speed precision cutting, design
for dynamics is favored for the design of precision machine tool systems [1]. This approach
employs computer-based analysis and design tools to optimize the dynamic performance of
machine-tool design at the system level. It is largely driven by a critical piece of information —
the vibration of the machine-tool. Due to the large set of parameters that affect cutting
vibrations, such as regenerative effects, tool nonlinearity, cutting intermittency, discontinuous
frictional excitation, and environmental noise, among many others, the effectiveness of the
approach commands that the dynamics of machining be completely established throughout
the entire process.

This book explores the fundamentals of cutting dynamics to the formulation and devel-
opment of an innovative control methodology. The coupling, interaction, and evolution of
different cutting states are studied so as to identify the underlying critical parameters that
can be controlled to negate machining instability and enable better machine-tool design for
precision micro and nano manufacturing.

The main features that contribute to the robust control of cutting instability are: (1) com-
prehension of the underlying dynamics of cutting and interruptions in cutting motions,
(2) operation of the machine-tool system over a broad range of operating conditions with

Control of Cutting Vibration and Machining Instability: A Time-Frequency Approach for Precision,
Micro and Nano Machining, First Edition. C. Steve Suh and Meng-Kun Liu.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.



2 Control of Cutting Vibration and Machining Instability

minimal vibration, such as high-speed operation to achieve a high-quality finish of the
machined surface, (3) an increased rate of production to maximize profit and minimize oper-
ating and maintenance costs, (4) concentration on the apparent discontinuities that allows the
nature of the complex machine-tool system motions to be fully established. The application
of simultaneous time-frequency nonlinear control to mitigate complex intermittent cutting
is both novel and unique. The impact on the area of material removal processes is in the
mitigation of cutting instability and chaotic chattering motion induced by frictional and tool
nonlinearity, and (5) development of concepts for cutting instability control and machine-tool
design applicable to high-speed cutting processes.

1.1 Instability in Turning Operation

We start the book with a comprehensive investigation on machining instability by employing
a three-dimensional turning model [2, 3, 4, 5] that addresses the concerns that (1) cutting
dynamic models developed to date all fall short of grasping the underlying dynamics of turning
operation and (2) stability charts developed using the models are inadequate to identify the true
stability regions. The specific objective of the study is to establish the proper interpretation of
cutting instability so as to establish the knowledge base for cutting instability control.

The complex machining model describes the coupled tool-workpiece dynamics subject
to nonlinear regenerative cutting forces, instantaneous depth-of-cut, and workpiece whirling
due to material imbalance. In the model the workpiece is considered a system of three rotor
sections — namely, unmachined, being machined, and machined — connected by a flexible
shaft, thus enabling the motion of the workpiece relative to the tool and tool motion relative
to the machining surface to be three-dimensionally established as functions of spindle speed,
depth-of-cut, rate of material removal, and whirling. Figure 1.1 shows the configuration of
the tool engaging the section that is being cut where the deviation of the geometric center
from the center of mass constitutes the eccentricity that characterizes workpiece whirling.
Using the model a rich set of nonlinear behaviors of both the tool and workpiece — including
period-doubling bifurcation and chaos signifying the extent of machining instability at
various depth-of-cuts — was observed. Results presented therein agree favorably with physical

C2 is the geometric center
G2 is the center of mass

v X

Figure 1.1 Configuration of the section that is being machined
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experiments reported in the literature. It is found that at, and up to, certain ranges of depth-
of-cuts, whirling is a non-negligible part of the fundamental characteristics of the machining
dynamics. Contrary to common belief, whirling is found to have an insignificant impact on
tool motions. The efforts documented in [2, 3, 4, 5] also show that the linearized turning model
underestimates tool vibrations in the time domain and overestimates system behaviors in the
frequency domain; whereas the nonlinear model agrees with the physical results reported
in the literature in describing machining stability and chatter. The coupled workpiece—tool
vibrations described by the nonlinear model are more pragmatic than the linearized counterpart
in revealing the true machining state of motion. The model also reveals in the qualitative sense
the broadband behavior of the tool natural frequency associated with unstable situations.
Vibration amplitudes obtained using the linearized model, however, are diverging at certain
depth-of-cuts (DOCs) without the commonly observed randomness in oscillation. Moreover,
the linearized model deems instability at low DOCs and predicts a bifurcated state of unstable
motion that is described as chaotic using physical data. Many important insights are gained
using the model, including the fact that if the underlying dynamics of machining is to be estab-
lished, and stability limits to be precisely identified, linearization of the nonlinear model is
not advisable.

1.1.1 Impact of Coupled Whirling and Tool Geometry on Machining

In addition to speed, feed rate, and DOC that affect material removal rate (MRR) and determine
cutting force and hence power consumption, tool geometry is also one of the prominent
parameters that impacts machining productivity. Surface roughness, chip formation changes,
and chip flow angle are also affected by tool geometry. Even though chip flow angle is related
to tool angles, chip flow angle is a function only of DOC. Figure 1.2 gives a view of the rake
angle, v, while undergoing cutting action. Tool rake angle determines the flow of the newly
formed chip. Usually the angle is between +5° and —5°. To compare with the experimental
result reported in [6], a constant spindle speed €2 = 1250 rpm, a constant chip width #) =
0.0965 mm, and an eccentricity ¢; = 0.2 mm are considered along with several different DOCs
including DOC = 1.62 mm and 2.49 mm. The workpiece considered is a 4140 steel bar of
0.25 m length (/p) and r3 = 20.095 mm radius of the machined section. The starting location
of the carbide tool is set at 0.15 m from the chuck. There are three types of plots in the figures
found in the sections that follow. The top rows plot time histories, whereas the middle rows
give their corresponding time-frequency responses obtained using instantaneous frequency
(which will be covered in great detail in Chapter 4). The last rows show the Lyapunov spectra
where the largest Lyapunov exponents are shown. Instantaneous frequency is employed to
realize subtle features characteristic of machining instability.

Positive rake makes the tool sharp, but it also weakens the tool compared with negative
rake. Negative rake is better for rough cutting. The selection of tool geometry depends on the
particular workpiece and tool materials being considered. To establish that tool angle does
have significant effects on cutting stability, two sets of tool geometries are used to determine
the cutting force in the following. Their values are given in Table 1.1. Both sets are taken
from the tool inserts that were used in the experiments reported in [6]. Since DOC considered
in the numerical study is less than 1 mm and can be considered as non-rough cutting, rake
angles are taken as positive for all cases. Note that negative rake is better for roughing. Three
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Figure 1.2 Cutting action with tool rake angle

DOCs (0.9 mm, 0.75 mm, and 0.5 mm) are used with a 1250 rpm spindle speed and a feed of
0.0965 mm per revolution in the study.

Except for Figures 1.6 and 1.7, all figures in Figures 1.3—1.8 give time responses, instanta-
neous frequency responses between 3 to 5 sec, and the corresponding Lyapunov spectra.
X-direction system responses are examined to demonstrate workpiece behaviors, and
Z-direction responses are analyzed to investigate tool motions. See also Figure 1.1 for the
coordinates defined for the being-machined section. Plots in the right column correspond to
Set #1 tool geometry conditions and the left column corresponds to Set #2 tool angles. In
Figure 1.3, the X-direction vibration amplitude of Set #2 tool geometry is seen to be twice that
of Set #1. However, their frequency domain behaviors are similar with a workpiece natural
frequency at 3270 Hz and a whirling frequency at 20.8 Hz. Set #2 shows two more frequencies,
one near the tool natural frequency at 425 Hz and another at 250 Hz, which disappears after
3.9 s. Set #1 has only one more tool-excited frequency. The frequency can be seen to decrease
from 580 Hz to 460 Hz within 2 seconds, implying that tool geometry is a non-negligible
parameter affecting workpiece stability.

Table 1.1 Tool angles

Set Number  Side cutting edge angle  Rake angle  Inclination angle

1 45 3.55° 3.55°
2 15° 5° P
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Figure 1.3 X-direction time responses, corresponding instantaneous frequency and Lyapunov spectra
for Set #1(left) and Set #2 (right) for DOC = 0.90 mm at = 1250 rpm

When DOC is decreased to 0.75 mm in Figure 1.4, there are still differences in vibration
amplitudes. With the reduction of its diameter, the workpiece natural frequency decreases to
3250 Hz. While whirling frequency remains the same, a 900 Hz component of a wide 500 Hz
bandwidth dominates in both systems. It can be seen in Set #2 that a bifurcation of the tool-
excited natural frequency at 425 Hz diminishes after 4.8 seconds. On the other hand, Set #1
does not have a bifurcation. It has a frequency component increase from 250 to 400 Hz. The
frequency components then disappear afterward. Both Lyapunov spectra fluctuate near zero,
thus leaving a question over whether the systems are exactly stable. Further deceasing DOC
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Figure 1.4 X-direction time responses, corresponding instantaneous frequency and Lyapunov spectra
for Set #1(left) and Set #2 (right) for DOC = 0.75 mm at 2 = 1250 rpm

to 0.5 mm in Figure 1.5 means both systems show an unstable situation marked by positive
Lyapunov exponents.

The relatively large force fluctuation seen in Figure 1.6 explains the large vibration ampli-
tudes seen for the tool geometry Set #2. Forces of large fluctuation push the workpiece to
deflect more. It is interesting to note that, even though tool geometry variations are supposed
to affect the cutting force, X-direction force amplitudes are almost identical for both tool
geometry sets.

Effects of tool geometry can be seen in the Y- and Z-direction force components in Figure 1.7.
While Y-direction forces for Set #2 are less than those of Set #1, Set #2 Z-direction forces are
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Figure 1.5 X-direction time responses, corresponding instantaneous frequency and Lyapunov spectra
for Set #1(left) and Set #2 (right) for DOC = 0.50 mm at = 1250 rpm

much higher than those of Set #1. In all plots, it is seen that force responses associated with
Set #1 tool geometry fluctuate less compared with those of Set #2. Tool dynamical motions for
DOC = 0.9 mm, 0.75 mm, and 0.5mm are also considered. Even though force fluctuations and
vibration amplitudes are both prominent, Set #2 is relatively more stable. Of the three DOC's
considered, two behave dissimilarly. In all three cases, the vibration history of Set #1 has
amplitudes that are of nanometers in scale. On the other hand, Set #2 vibrates with amplitudes
that are a few microns for DOC = 0.9 mm and 0.75 mm, and several nanometers for DOC =
0.5 mm. Unlike Set #1, all Lyapunov spectra for Set #2 are evidence of a stable state of dynamic
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Figure 1.6 Forces in X- direction for Set #1(left) and Set #2 (right) for DOC = 0.90 mm (top),
DOC = 0.75 mm (middle), and DOC = 0.50 mm (bottom) at 2 = 1250 rpm

response. Though it has positive Lyapunov exponents, Set #2 shows instability for the DOC =
0.9 mm and 0.5 mm cases. IF plots for DOC = 0.9 mm in Figure 1.8 confirm that the Set #1
response is broadband and thus unstable, and Set #2 is stable with a clean spectrum. Although
the Lyapunov spectrum indicates a stable state of tool motion for Set #1 at DOC = 0.75 mm,
the corresponding instantaneous frequency suggests otherwise. The instantaneous frequency
plot for Set #2 at DOC = 0.5 mm also contradicts the Lyapunov spectrum (not shown). A
detailed review of the individual instantaneous frequency mono-components reveals that the
frequency at 3240 Hz has bifurcated three times. Thus, it is in a highly bifurcated state.

The effects of tool geometry on cutting dynamics and its impact on surface finishing
investigated above generate a few observations. The manufacturing industry has long learned
to employ tool inserts with complex geometry to achieve better product surface finish. However,



