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Abstract

In this paper we extend the notion of a continuous bundle random dynamical
system to the setting where the action of R or N is replaced by the action of an
infinite countable discrete amenable group.

Given such a system, and a monotone sub-additive invariant family of random
continuous functions, we introduce the concept of local fiber topological pressure
and establish an associated variational principle, relating it to measure-theoretic
entropy. We also discuss some variants of this variational principle.

We introduce both topological and measure-theoretic entropy tuples for con-
tinuous bundle random dynamical systems, and apply our variational principles to
obtain a relationship between these of entropy tuples. Finally, we give applications
of these results to general topological dynamical systems, recovering and extending
many recent results in local entropy theory.
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CHAPTER 1

Introduction

In the early 1990s Blanchard introduced the concept of entropy pairs to search
for satisfactory topological analogues of Kolmogorov systems [3,4]. Stimulated
by these two papers, local entropy theory for continuous actions of a countable
amenable group on compact metric spaces developed rapidly during the last two
decades, see [5-7,21,29,32,34-38,64,72]. It has been studied for countable
sofic group actions in [76] by the second author. For more details of the area,
see for example Glasner’s book chapter [30, Chapter 19] or the nice survey [33]
by Glasner and Ye. Observe that, as shown by [30, Chapter 19] and [33] (and
references therein), a detailed analysis of the local properties of entropy provides
additional insight into the related global properties, and local properties of entropy
can help us to draw conclusions for global properties.

The foundations of the theory of amenable group actions were set up in the
pioneering paper [62] by Ornstein and Weiss, and further developed by Rudolph
and Weiss [65] and Danilenko [17]. See also Benjy Weiss’ lovely survey article
[71]. Global entropy theory for amenable group actions has also been discussed
by Moulin Ollagnier [59]. Other related aspects were discussed in [18,20, 31, 60,
61,66,69]. The connection between local entropy and combinatorial independence
across orbits of sets in dynamical systems was studied systematically by Kerr and
Li in [41,42] for amenable group actions and in [43] for sofic group actions, and
has been discussed by Chung and Li in [14] for amenable group actions on compact
groups by automorphisms.

Our principal aim in this article is to extend the local theory of entropy to
the setting of random dynamical systems of countable amenable group actions. To
date, most discussions of random dynamical systems have concerned R-actions,
Z-actions or Z.-actions. Furthermore, to the best of our knowledge, there has
been little discussion of the local theory. In slightly more precise terms, we aim to
make a systematic study of the local entropy theory of a continuous bundle random
dynamical system over an infinite countable discrete amenable group. )

In the setting of random dynamical systems, rather than considering iterations
of just one map, we study the successive application of different transformations
chosen at random. The basic framework was established by Ulam and von Neu-
mann [67] and later by Kakutani [40] in proofs of the random ergodic theorem.
Since the 1980s, mainly because of stochastic flows arising as solutions of stochastic
differential equations, interest in the ergodic theory of random transformations has
grown [2,8-10,16,44-48,52,55-57,77|. It was shown in [8] that the cornerstone
for the entropy theory of random transformations is the Abramov-Rokhlin mixed
entropy of the fiber of a skew-product transformation (cf [1]). Our main result,

1



2 ANTHONY H. DOOLEY and GUOHUA ZHANG

Theorem 7.1 establishes a variational principle for local topological pressure in this
setting.

In the local entropy theory of dynamical systems as studied in [30, Chapter
19], [33] (and references therein) and [38], most significant results involving entropy
pairs have been obtained using measure-theoretic techniques and a local variational
principle initiated by [5].

Let G be an infinite countable discrete amenable group acting on a compact
metric space X. Let V be a finite open cover of the space X, and v a G-invariant
Borel probability measure on X. Denote by hiop(G, V) and h, (G, V) the topological
entropy and measure-theoretic v-entropy of V, respectively. In [38] Huang, Ye and
the second author of the paper proved the following version of local variational
principle [38, Theorem 5.1]:

(1.1) htop(G, V) = ue%l(axx,c:) ho(G, V),

where P(X, G) denotes the set of all G-invariant Borel probability measures v on X.
Subsequently, (1.1) was generalized by Liang and Yan [53, Corollary 1.2], recovering
the global variational principle [59, Variational Principle 5.2.7] by Moulin Ollagnier.
They showed that for each real-valued continuous function f over X,

(1.2) P(£.V) =, max[hu(G.V) + /X f(@)dv(a)],

where P(f,V) denotes the topological V-pressure of f. We recover hy,p(G, V) when
[ is the constant zero function.

Remark that, in the local theory of entropy of dynamical systems, many vari-
ants of (1.1) and (1.2) have been discussed by [5,12,32,35, 36,39, 64, 75|, either
for a Z-action on compact metric spaces or for a factor map between topological
Z-actions.

Let the family F, associated with £ € F x Bx, be a continuous bundle random
dynamical system over a measure-preserving G-action (€2, F, P, G), where: G is an
infinite countable discrete amenable group, (€2, F,P) is a Lebesgue space, and X is
a compact metric space associated with Borel o-algebra By .

In our process of building local entropy theory for F, the first and most impor-
tant step is to prove a local variational principle similar to that given by equations
(1.1) and (1.2).

More precisely, let U be a finite random open cover, f a random continuous
function and p € Pp(€,G), where Pp(E, G) denotes the set of all G-invariant prob-
ability measures on £ having the marginal P over 2. Denote by Pg(f,U,F) and
Pe(f.F) the fiber topological f-pressure of F with respect to/ and fiber topological
f-pressure of F, respectively. Denote by hg)(F,l/{ ) and hg) (F) the p-fiber entropy
of F with respect to U and p-fiber entropy of F, respectively.

We introduce the property of factor good for finite random open covers, and
obtain a local variational principle which may be stated as follows:

13 PUUT = max WOEU+ [ oo

provided that U/ is factor good. We show in Theorem 6.10 and Theorem 6.11 that
many interesting finite random open covers are factor good.
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By taking the supremum over all finite random open covers which are factor
good, and using (1.3) one obtains:

(14) Pe(fF) = sup WO+ [ flo,m)dute, )]
HEP(E,G) £

which is exactly Kifer’s [46, Proposition 2.2] in the special case where G = Z. Note

that by Remark 7.3, if the underlying G-action (€2, F,P,G) is trivial, i.e. € is a

singleton, then the equation (1.3) becomes (1.1) and (1.2), and the equation (1.4)

becomes [59, Variational Principle 5:2.7], respectively.

In fact, we prove our main result Theorem 7.1 in the more general setting given
by a monotone sub-additive invariant family D of random continuous functions.
Denote by Pg(D,Z/{L,F) and Pg(D,F) the fiber topological D-pressure of F with
respect to U and fiber topological D-pressure of F, respectively. Theorem 7.1
states that: if, in addition, the family D satisfies the assumption (#) (cf Chapter
7), then

1.5 P:(D,U,F) = (F, U D

(15) =(D.UF) = max [0 (F.U) + u(D)]

for factor good U, and finally

(1.6) P¢(D,F)= sup [h{)(F)+ p(D)].
HEPy(E,G)

As shown by (7.9) and (7.10), equations (1.5) and (1.6) contain (1.3) and (1.4),
respectively. We explore further assumption (#) in Chapter 9 and Chapter 10. It
turns out to be quite natural for countable amenable groups in the following sense:
the assumption (#) always holds if, in addition, either the family D is strongly
sub-additive (cf Proposition 9.1) or the group G is abelian (cf Proposition 10.4).

With the above variational principles, we are able to introduce both topological
and measure-theoretic entropy tuples for a continuous bundle random dynamical
system, and build a variational relationship between these two kinds of entropy
tuples.

It is known (Section 2 of Chapter 13) that the setting of a factor map between
topological dynamical systems is in fact equivalent to a special kind of continuous
bundle random dynamical systems. Thus, we can apply the above results to study
general topological dynamical systems. For example, in Section 3 of Chapter 13
we show that, using (7.5) and (7.6), variants of Theorem 7.1, one can obtain [51,
Theorem 2.1], the main result of [51] by Ledrappier and Walters.

In Section 4 of Chapter 13 , we may apply Theorem 7.1 to generalize the Inner
Variational Principle [23, Theorem 4] of Downarowicz and Serafin to arbitrary
amenable group actions and any finite open cover (cf Theorem 13.2). Theorem
13.2 has also been used to set up symbolic extension theory for amenable group
actions by Downarowicz and the second author of the paper [24] .

Moreover, our results on entropy tuples of a continuous bundle random dy-
namical systems, enable us to study entropy tuples for a topological dynamical
systems, recovering many recent results in the local entropy theory of Z-actions (cf
[4,6,29,30,33,35,37]) and of infinite countable discrete amenable group actions
(cf [38]).

The ideas in the proofs of Propositions 9.1 and 10.4 have been used by Golodets
and the authors of the paper to obtain analogues of Kingman’s sub-additive ergodic
theorem for countable amenable groups ([19]).
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The paper consists of three parts and is organized as follows.

The first part gives some preliminaries: on infinite countable discrete amen-
able groups following [59,62,69, 71|, on general measurable dynamical systems of
amenable group actions, and on continuous bundle random dynamical systems of
an amenable group action extending the case of Z by [8,46,47,56]. In addition to
recalling known results, this part contains some new results: firstly, a convergence
result (Proposition 2.5) for infinite countable discrete amenable groups extending
[71, Theorem 5.9] (the difference between Moulin Ollagnier’s Proposition 2.3 and
our Proposition 2.5 is seen in Example 2.7); secondly, a relative Pinsker formula for
a measurable dynamical system with an amenable group action (discussed in [31]
in the case where the state space is a Lebesgue space), see Theorem 3.4 and Remark
3.5; thirdly, an improved understanding of the local entropy theory of measurable
dynamical systems, see Theorem 3.11 and Question 3.12.

In the second part we present and prove our main results. More precisely, in
Chapter 5, we take a continuous bundle random dynamical system of an infinite
countable discrete amenable group action and a monotone sub-additive invariant
family of random continuous functions, and follow the ideas of [12,39,64,75] to
introduce and discuss the local fiber topological pressure for a finite random open
cover. Then in Chapter 6 we introduce and discuss the concept of factor excellent
and good covers, which assumptions are needed for our main result, Theorem 7.1.
We show in Theorem 6.10 and Theorem 6.11 that many interesting finite random
open covers are factor good. In Chapter 7 we state Theorem 7.1, and give some
comments and direct applications. Then, in Chapter 8 we present the proof of
Theorem 7.1 following the ideas of [36,38, 58,74, 75].

For Theorem 7.1, we need to assume a condition, which we call (#) on the
family of random continuous functions: this is discussed in detail in Chapter 9.
In Chapter 10 we discuss the special case of Theorem 7.1 for amenable groups
admitting a tiling Felner sequence, and prove that assumption (#) always holds if
the group is abelian. The proof of Theorem 7.1 is for finite random open covers.
Inspired by Kifer’'s work [46, §1], in Chapter 11 we generalize Theorem 7.1 to
countable random open covers.

The last part of the paper is devoted to applications of the local variational
principle established in Part 2. In Chapter 12, following the line of local entropy
theory (cf [30, Chapter 19] or [33]), we introduce and discuss both topological and
measure-theoretic entropy tuples for a continuous bundle random dynamical sys-
tem, and establish a variational relationship between them. Finally, in Chapter 13
we apply the results obtained in the previous chapters to the setting of a general
topological dynamical system, incorporating and extending many recent results in
the local entropy theory [4,6,29,30,33,35-38], as well as establishing (Theorems
13.2 and 13.3) some new variational principles concerning the entropy of a topolog-
ical dynamical system. We should emphasize that, by the results of [24], Theorem
13.2 is important for building the symbolic extension theory of amenable group
actions.
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Part 1

Preliminaries



Denote by Z,Z,,N,R, R, and R+ the set of all integers, non-negative inte-
gers, positive integers, real numbers, non-negative real numbers and positive real
numbers, respectively.

In this part, we give some preliminaries, including: infinite countable discrete
amenable groups, measurable dynamical systems, and continuous bundle random
dynamical systems.



CHAPTER 2

Infinite countable discrete amenable groups

In this chapter, we recall the principal results from [59, 62,69, 71] and obtain
a new convergence result Proposition 2.5 for infinite countable discrete amenable
groups. As shown by'Remark 2.6, Proposition 2.5 strengthens [71, Theorem 5.9]
proved by Benjy Weiss. The difference between Moulin Ollagnier’s Proposition 2.3
and Proposition 2.5 is demonstrated by Example 2.7; the two results are different
even in the setting of an infinite countable discrete amenable group admitting a
tiling Folner sequence.

The principal convergence results (Proposition 2.2, Proposition 2.3 and Propo-
sition 2.5) are crucial for the introduction and discussion of local fiber topological
pressure of a continuous bundle random dynamical system in Part 2.

Let G be an infinite countable discrete group and denote by eq the identity of
G. Denote by F¢ the set of all non-empty finite subsets of G.

G is called amenable, if for each K € F; and any d > 0 there exists F € Fg
such that |FAKF| < 0|F|, where | ®| is the counting measure of the set o, KF =
{kf:ke K,fe F} and FAKF = (F\KF)U(KF\F). Let K € Fg and § > 0.
Set K~'={k~!: ke K}. A€ Fg is called (K,§)-invariant, if

IK'ANK~YG\ A)| < 4] A|.
A sequence {F), : n € N} in F¢ is called a Folner sequence, if

lgFnAF,|

(2.1) lim =0

n—oo | Fonl
for each g € G. It is not too hard to obtain the usual asymptotic invariance property
from this, viz.: G is amenable if and only if G has a Felner sequence {F), }nen. In
the class of countable discrete groups, amenable groups include all solvable groups.
In the group G = Z, it is well known that F, = {0,1,--- ,n — 1} defines a
Folner sequence, as, indeed, does {a,,a, +1,--+,a, +n — 1} for any sequence
{an }nGN CZ.

Standard Assumption 1. Throughout the current paper, we will assume that G
s always an infinite countable discrete amenable group.

The following terminology and results are due to Ornstein and Weiss [62] (see
also [65,69]).
Let Ay,--- ,Ax, A€ Fg and e € (0,1), a € (0, 1].

(1) Subsets Aj,--- , Ay are e-disjoint if there are By, -+ , By € F¢ such that
B; S,
BigAi,| | 1 —e€and B; N B; =0 whenever 1 <i# j <k.

— >
|Ail
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(2) {Ay1,---, A} a-covers A if
k
[An U A
=l
|Al
(3) Ay,---, Ak e-quasi-tile A if there exist Cy,--- ,Cy € Fg such that
(a) foreachi=1,---,k, A;C; € Aand {A;c: c € C;} forms an e-disjoint
family,
(b) A;C;NA;C; =0if1 <i# j<kand
(¢) {ACi:i=1,--- k} forms a (1 — €)-cover of A.
The subsets Cy,--- ,Cy are called the tiling centers.
We have (see for example [38, Proposition 2.3], [62] or [69, Theorem 2.6]):

> .

PROPOSITION 2.1. Let {F, : n € N} and {F}, : n € N} be two Folner sequences
of G. Assume that e € Fy C F, C ---. Then for any € € (0,3) and each N € N,
there exist integers ny,--- ,ng with N < ny < --- < ny such that F,, ,--- , F,,
e-quasi-tile F), whenever m is sufficiently large.

It is a well-known fact in analysis that if {a, : n € N} C R is a sequence
satisfying that an4m < an + an, for all n,m € N, then the sequence {3* : n € N}
converges and

(2.2) lim 2 = inf 2% > —c0.

n—oo M neEN n
Similar facts can be proved in the setting of an amenable group as follows.

Let f: Fe¢ — R be a function. Following [38], we say that f is:
(1) monotone, if f(E) < f(F) for any E, F € Fg satisfying E C F;
(2) non-negative, if f(F) > 0 for any F € Fg;
(3) G-invariant, if f(Fg) = f(F) for any F € F¢ and g € G;
(4) sub-additive, if f(EUF) < f(E)+ f(F) for any E, F € Fg.
The following convergence property is well known (see for example [38, Lemma
2.4] or [54, Theorem 6.1]).

PRrROPOSITION 2.2. Let f : Fg — R be a monotone non-negative G-invariant
sub-additive function. Then for any Folner sequence {F, : n € N} of G, the

sequen.ce {%;—"l) :n € N} converges and the value of the limit is independent of the

choice of the Folner sequence {F,, : n € N}.

For a function f as in Proposition 2.2, in general we cannot conclude that the
limit of the sequence {%% :n € N} is its infimum. This is shown by Example 2.7
constructed at the end of this chapter (see also Remark 2.8 for more details).

In order to deduce properties analogous to those of (2.2) for the sequence
{Ll(lfn—"l) : n € N}, some additional conditions must be added to the assumptions
of Proposition 2.2. This can be done in two different ways, both of which will be
important for us.

The first extension is:

PROPOSITION 2.3. Let f : Fg — R be a function. Assume that f(Eg) = f(E)
and f(ENF)+ f(EUF) < f(E) + f(F) whenever g € G and E,F € Fg (we set -
f(@) = 0 by convention). Then for any Folner sequence {F, : n € N} of G, the



