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An Introduction to Polynomial and Semi-Algebraic Optimization

This is the first comprehensive introduction to the powerful moment approach for solv-
ing global optimization problems (and some related problems) described by polynomi-
als (and even semi-algebraic functions). In particular, the author explains how to use
relatively recent results from real algebraic geometry to provide a systematic numerical
scheme for computing the optimal value and global minimizers. Indeed, among other
things, powerful positivity certificates from real algebraic geometry allow one to define
an appropriate hierarchy of semidefinite (sum of squares) relaxations or linear pro-
gramming relaxations whose optimal values converge to the global minimum. Several
specializations and extensions to related optimization problems are also described.

Graduate students, engineers and researchers entering the field can use this book
to understand, experiment and master this new approach through the simple worked
examples provided

JEAN BERNARD LASSERRE is Directeur de Recherche at the LAAS-CNRS labora-
tory in Toulouse and a member of the Institute of Mathematics of Toulouse (IMT). He
is a SIAM Fellow and in 2009 he received the Lagrange Prize, awarded jointly by the
Mathematical Optimization Society (MOS) and the Society for Industrial and Applied
Mathematics (SIAM).
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Symbols

N, the set of natural numbers

Z, the set of integers

Q, the set of rational numbers

R, the set of real numbers

R, the set of nonnegative real numbers
C, the set of complex numbers

<, less than or equal to

<, inequality “<” or equality “="

A, matrix in R”*"

A, column j of matrix A

A > 0 (> 0), A is positive semidefinite (definite)

x,scalarx € R

X, vector X = (x1,...,x,) € R"

o, vectora = (ay, ...,q,) € N"

le| = Y7, i fore € N

N, CN", theset {e e N" : || < d }

x¥, monomial x* = (x{" ---x;")x e C" orx e R", @ € N"

R[x], ring of real univariate polynomials

R[x] = R[xy, ..., x,], ring of real multivariate polynomials

(x%), @ € N", canonical monomial basis of R[x]

Ve(I) € C", the algebraic variety associated with an ideal / C R[x]

V1, the radical of an ideal / C R|x|

Y1, the real radical of an ideal I C R[x]

I(Ve(1)) € €7, the vanishing ideal | f € R[x] : f(z) =0, Yz € Vc(]) }

Vr(I) C R” (equalto Vc(/) N R"), the real variety associated with an ideal
I C R[x]

I(Vr(1)) C R[x], the real vanishing ideal { f € R[x]: f(x) =0,¥x € Vg(/)}

Xiii



Xiv Symbols

R[x]; C R[x], vector space of real multivariate polynomials of degree at most ¢

> Ix]; € R[x]y, the convex cone of SOS polynomials of degree at most 2¢

R[x[*, vector space of linear forms on R[x]

R[x]}, vector space of linear forms on R[x];

y = (yg), @ € N" real moment sequence indexed in the canonical basis of
R[x]

My (y), moment matrix of order d associated with the sequence y

M, (gy), localizing matrix of order ¢ associated with the sequence y and g €
R[x]

P(g) C R|x], preordering generated by the polynomials (g;) C R[x]

Q(g) C R[x], quadratic module generated by the polynomials (g;) C R[x]

co X, convex hull of X ¢ R”

B(X), space of bounded measurable functions on X

C(X), space of bounded continuous functions on X

M(X), vector space of finite signed Borel measures on X C R”

M(X), € M(X), space of finite (nonnegative) Borel measures on X C R"

P(X) € M(X),, space of Borel probability measures on X C R”

L (X, n), Banach space of functions on X C R” such that fx | fldp < o0

Loo(X, ), Banach space of measurable functions on X C R” such that
I flloo := ess sup | f] < oo

o (X, Y), weak topology on & for a dual pair (X', V) of vector spaces

n = i, weak convergence for a sequence ((4,), € M(X) 4+

v < w, v is absolutely continuous with respect to to p (for measures)

1, monotone convergence for nondecreasing sequences

|, monotone convergence for nonincreasing sequences

SOS, sum of squares

LP, linear programming (or linear program)

SDP, semidefinite programming (or semidefinite program)

GMP, generalized moment problem (or GPM, generalized problem of
moments)

SDr, semidefinite representation (or semidefinite representable)

KKT, Karush—Kuhn-Tucker

CQ, constraint qualification

LMI, linear matrix inequality

b.s.a., basic semi-algebraic

b.s.a.l., basic semi-algebraic lifting

l.s.c., lower semi-continuous

u.s.c., upper semi-continuous
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1

Introduction and message of the book

1.1 Why polynomial optimization?

Consider the global optimization problem:

P: o= ir;f{f(x) : xeK} (1.1)
for some feasible set
K={xeR":gix) 20, j=1,....,m}, (1.2)

where f, g; : R”— R are some continuous functions.

If one is only interested in finding a local (as opposed to global) minimum
then P is a Nonlinear Programming (NLP) problem for which several methods
and associated algorithms are already available.

But in this book we insist on the fact that P is a global optimization problem,
that is, f* is the global minimum of f on K. In full generality problem (1.1) is
very difficult and there is no general purpose method, even to approximate f*.

However, and this is one of the messages of this book, if one now restricts
oneself to Polynomial Optimization, that is, optimization problems P in (1.1)
with the restriction that:

f and g : R"—=R are all polynomials, j =1, ..., m,

then one may approximate f* as closely as desired, and sometimes solve P
exactly. (In fact one may even consider Semi-Algebraic Optimization, that is,



2 Introduction and message of the book

when f and g; are semi-algebraic functions.) That this is possible is due to the
conjunction of two factors.

e On the one hand, Linear Programming (LP) and Semidefinite Programming
(SDP) have become major tools of convex optimization and today’s power-
ful LP and SDP software packages can solve highly nontrivial problems of
relatively large size (and even linear programs of extremely large size).

e On the other hand, remarkable and powerful representation theorems (or
positivity certificates) for polynomials that are positive on sets like K in (1.2)
were produced in the 1990s by real algebraic geometers and, importantly,
the resulting conditions can be checked by solving appropriate semidefinite
programs (and linear programs for some representations)!

And indeed, in addition to the usual tools from Analysis, Convex Analysis
and Linear Algebra already used in optimization, in Polynomial Optimization
Algebra may also enter the game. In fact one may find it rather surprising that
algebraic aspects of optimization problems defined by polynomials have not
been taken into account in a systematic manner earlier. After all, the class of
linear/quadratic optimization problems is an important subclass of Polynomial
Optimization! But it looks as if we were so familiar with linear and quadratic
functions that we forgot that they are polynomials! (It is worth noticing that
in the 1960s, Gomory had already introduced some algebraic techniques for
attacking (pure) linear integer programs. However, the algebraic techniques
described in the present book are different as they come from Real Algebraic
Geometry rather than pure algebra.)

Even though Polynomial Optimization is a restricted class of optimization
problems, it still encompasses a lot of important optimization problems. In
particular, it includes the following.

e Continuous convex and nonconvex optimization problems with linear and/or
quadratic costs and constraints, for example

inf{x7A0x+ng: xTij+b}x—('_,- >0, j=1,...,m},

X;
for some scalars ¢j, j = 1, ..., m, and some real symmetric matrices A ; €
R"*" and vectors b; € R", j =0, ..., m.

e (/1 optimization problems, modeling a Boolean variable x; € {0, 1} via the
quadratic polynomial constraint x,.2 — x; = 0. For instance, the celebrated
MAXCUT problem is the polynomial optimization problem



