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WELCOME TO DUBLIN, THE 7TH INTERNATIONAL TIME SERIES MEETING (ITSM)
AND THESE PROCEEDINGS

Oliver D. Anderson
TSA&F, 9 Ingham Grove, Lenton Gardens, Nottingham NG7 2LQ, England

This Introduction to Time Series Analysis: Theory and Practice 2 provides a brief
report on the first Dublin (Ireland) ITSM, together with acknowledgements to all
those people who made the volume possible.

1. THE EVENT

Failte (Welcome) ! Details of this Conference (held residentially
from 15 to 19 March, 1982, in the hub of Dublin at the Gresham Hotel
in O'Connell Street), including the Joining Instructions, Hotel
Arrangements, Participants List, Technical Programme and Collection
of Abstracts, were given in the February and March 1982 issues of
the TSA&F Flyer, with some additional (late) abstracts in the April
'82 TSA&F News.

The Meeting proved to be a most friendly and enjoyable affair, with
participants getting inexorably, but pleasantly, pulled into the
carnival atmosphere of St Patrick's Week, and being helped to a
glimpse of Irish life and culture through the generous and able
guidance of Michael and Aine O hEigeartaigh.

Some people managed to squeeze in a visit to the Gate Theatre, which
was playing an excellent production of Schaffer's Amadeus; whilst
most participants attended the Ceili (Irish Dancing), at the Mansion
House, and witnessed other assorted Irish entertainment in
traditional Dublin Pubs. A walking tour of central Dublin took in
the National Gallery, National Museum and Trinity College (complete
with "Book of Kells"); and there was a popular half-day excursion
into the nearby Wicklow Mountains.

Winners at the final dinner draw were: Julia Ali (USA) - A free
guest place at a 1983 event; Willem Boeschoten (Netherlands) - A
free copy of these Conference Proceedings; Jostein Lillestd&l

(Norway) - Time-Series by Sir Maurice Kendall; Jean-Paul Wauters
(France) - Payment of his "extras" bill (up to the time of the draw!).

As usual, the Guests (Friends and Family of the Technical Delegates)
undoubtedly had a good time.

2. THIS BOOK

Due to the fact that rather a lot of invited speakers failed to make
it to Dublin, some papers included here were not actually presented
in March. Readers should not take this as a precedent, and expect

to be able to contribute <n absentia to future Proceedings volumes.

Papers had to clear a number of hurdles to achieve publication.
Some were eliminated at each of the following stages:

(1) Initial Proposal of Tentative Topic;
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(2) Provisional Abstract;

(3) Preliminary Screening of Full Paper;
(4) Formal Refereeing of Polished Paper;
(5) Revised Version Assessment;

(6) Final Camera-Ready Preparation;

and, in the end, less than a quarter of the original submissions
stayed the course.

Apart from the editing and screening, the reviewing operation
involved the consideration of over seventy referee reports; and our
warmest thanks are due to all those experts who most kindly helped
in the process. These included the following 30 people from 11
countries (which provides some idea of the internationality of our
pool of authorities who so generously gave of their time):

Oliver D. Anderson (UK) Guy Mélard (Belgium)

Raj J. Bhansali (UK) Arnold H.Q.M. Merkies (Netherlands)
Eddie W. Borghers (Belgium) Wolfgang Polasek (Austria)
Christopher Chatfield (UK) Adrian E. Raftery (Ireland)
Eivind Damsleth (Norway) George Rawlings (UK)

Jan G. de Gooijer (Netherlands) Brian D. Ripley (UK)

Frank D.J. Dunstan (UK) Peter M. Robinson (UK)

Max Ernoult (France) Peter Schmidt (USA)

Andrew Harvey (UK) Torsten Sdderstrdm (Sweden)
Ruud M.J. Heuts (Netherlands) Daniel Sprevak (UK)

Eliot Khabie-Zeitoune (UK) Keith D.C. Stoodley (UK)
Tryphon E. Kollintzas (USA) Stephen J. Taylor (UK)

Johannes Ledolter (USA) E.G.F. van Winkel (Netherlands)
Jostein Lillestdl (Norway) A. Morris Walker (UK) &

Helmut Liitkepohl (West Germany) Walter Wasserfallen (Switzerland).

The preponderance of Western Europeans in the above list is perhaps
unfortunate, but reflects very real constraints on whom the ITSM can
approach for swift reports, due to the twin problems of less rapid
communications and exorbitant air mailing charges, when dealing with
referees from farther afield.

No doubt, some critics will find a few papers included which they do
not like - and they may be right. But, rather than condemn our
very considerable endeavours, might we suggest that they offer to
join the pool of referees, and help prevent any similar incidence in
the future.

It is also perhaps worth remembering that any markedly adverse
criticism of a contribution disagrees with the opinions of at least
two (and generally three) other experts (apart from the Editor and
Authors) , who have refereed the work and recommended publication.
One surely risks a label of arrogance in lightly dismissing this
general seal of approval. On the whole, we believe that the papers
published here will be found as useful, to people concerned with
actually analysing time series data, as those appearing in what pass
for the better academic journals. Certainly we expect many more
practitioners to read them.

Of course, any errors in judgement (as to what should go to press)
remain the responsibility solely of the Proceedings Editor - and,
for these, we now apologise. Evidently, we have to balance against
the evil of mistaken inclusion that of wrongful exclusion. We
needs try to be fair to authors as well as readers.
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We end the book with biographical sketches for some of the authors -
a gesture apparently much appreciated, the last time made (in
Forecasting Public Utilities, see the Appendix below), and which we
hope to introduce as a regular feature for future Proceedings
volunes.

3. OTHER THANKS

The Convenor, Oliver Anderson, is most grateful to all the
participants and guests for their attendance and splendid group
spirit, and to the speakers for presenting their contributions. As
Editor, he is very appreciative of all the hard work put in by both
authors and referees, and especially to Dr Bob van Winkel who
arranged for the presentation and reviewing of a Dutch session of
papers.

And a special word of thanks from everyone to our Irish guides,
Michael and Aine O hEigeartaigh.

It remains to thank the reader for his (her) attentions. A good
journey to you. Le gach dea-ghui.
APPENDIX

Publications from Earlier Events Organised by Oliver Anderson

The following volumes are published by North-Holland, with 0.D.
Anderson as Editor:

Forecasting (1976 Cambridge Conference) 1979, reprinted 1980.

ISBN 0-444-85189-5.

Time Series (1979 Nottingham Meeting) 1980. ISBN 0-444-85418-5.
Analysing Time Series (1979 Guernsey Meeting) 1980. ISBN 0-444-
85464-9.

Forecasting Public Utilities (1980 Nottingham Conference) 1980.

ISBN 0-444-86046-0.

Time Series Analysis (1980 Houston Meeting) 1981. ISBN 0-444-86177-7.
Time Series Analysis: Theory and Practice 1 (1981 Valencia Meeting) 1982.
ISBN 0-444-86337-0.

Applied Time Series Analysis (1981 Houston Meeting) 1982.

ISBN 0-444-86424-5.

Also, in preparation, we have (with tentative titles):

Time Series Analysis: Theory and Practice 3 (1982 Valencia Conference)
Time Series Analysis: Theory and Practice 4 (1982 Cincinnati Meeting).

In all the above, "Meeting" implies an emphasis on Time Series,
"Conference" on Forecasting.

REFERENCES

TSAEF Flyer. The Time Series Analysis and Forecasting Monthly Information Bulletin,
1980 onwards (ISSN 0260-9053). Edited by 0.D. Anderson, 9 Ingham Grove, Lenton
Gardens, Nottingham NG7 2LQ, England.

TSA&F News. The Time Series Analysis and Forecasting Newsletter (a quarter!y
publication), 1979 onwards (ISSN 0143-0505). Edited by O.D. Anderson, addrcss as
for Flyer above.
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ESTIMATION FOR MOVING AVERAGE MODELS: WHY DOES IT FAIL ?

Eivind Damsleth

Norwegian Computing Center
P.0.Box 335 Blindern
Oslo 3

Different techniques for estimation of ARIMA-models are investigated,
with special emphasis on the moving-average case. It is shown
empirically and theoretically that the back-forecasting method
suggested by Box & Jenkins (1970) may lead to biased estimates for the
MA-parameter(s) as well as for the residual variance. This is
particularly so if the series is short and/or the parameters are close
to the invertibility region. An explanation for the numerical
problems, often encountered in this estimation problem, is also given.
The results are of special importance when seasonal models are
considered.

MAIN RESULTS

Three methods for estimation of the MA(1) model are discussed: the conditional sum
of squares method, the back-forecasting method (with various numbers of
iterations) and the exact maximum likelihood method. In each case the expected
value of the optimization criterion is deduced. The Figure on the next page gives
one typical example for the behaviour of the function to be minimized by the
different methods.

It is seen that the conditional method (0 iterations) tends to give estimates too
close to zero. The back-forecasting method, on the other hand, gives estimates
which are biased towards the non-invertibility boundary, with the bias increasing
with the number of iterations. Finally, the exact maximum likelihood method tends
to give unbiased estimates; but, in this case, the function is very flat around
the minimum and numerical problems may be encountered.

SUMMARY

Evidence is provided that the back-forecasting technique may give biased
estimates, and also lead to severe numerical problems, if the sample size is small
and/or the true parameter value is close to one of the invertibility bounds. Such
situations may occur infrequently, but the problem becomes more serious when one
is dealing with seasonal models where differencing has been applied to remove a
seasonal mean. If the seasonal pattern is stable, the differencing will introduce
an MA-parameter close to 1. Further, when seasonal models are considered, it is
the number of full periods that enters the formulae for the expected value of the
optimization criteria, rather than the number of observations; and this number of
full periods will typically be small.

The complete version of this paper is submitted for publication elsewhere. Only
the abstract, main results and summary are presented here.
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Our evidence adds to the view that exact maximum likelihood methods should be
applied when estimating time series models. However, these methods are not as
widely used as they should be, since a lot of commercially available program
packages offer only the back-forecasting technique. In this case we believe our
results show that the back-forecasting should be implemented with only one
iteration. The possibility of several iterations may lead to bad estimates as well
as severe numerical problems.

REFERENCE

BOX, G.E.P. and JENKINS, G.M. (1970). Time Series Analysis, Forecasting and
Control. Holden-Day, San Francisco.
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PREDICTION IN CONTINUOUS TIME
E. Khabie-Zeitoune

Mathematics Department
North East London Polytechnic
Romford Rd, London E15

The field of possible applications for a recently introduced
modelling methodology is extended. In particular, a method adapted
to digital computers, for the prediction of series generated from
continuous time processes, is highlighted. As a by-product, special
treatment for the two problems of discretisation of continuous time
processes and of timewise missing observations becomes unnecessary.
Counter examples for the lack of a Wold decomposition, for
nonstationary processes in gemneral, are considered and their
relation to the specification of a minimum set of unknown
parameters stated.

1. INTRODUCTION

A general purpose methodology for modelling multiple mnonstationary
time series has already been introduced in [23] to [27]. The
notation and definitions given in these earlier papers will be used
here unless otherwise stated.

In addition, T denotes a set, often (though mnot always) to be
interpreted as the time index set. X ¢ , t in T is a stochastic
process, real or complex, vector valued, of dimension d. For a
discrete (or continuous) vector valued process, T is assumed to be
the set of nonnegative integers N (or real numbers R 4+ ). When the
process is stationary, it is the set of all integers Z ( or all
reals R). Other choices of T are possible but will not be
considered in this paper. S, a finite subset of T, called the
information support, is assumed to be <endowed with an order
relation, denoted ( . The elements of S are denoted t 1 , eswst n
and correspond to instants when a sample of observations X ¢t 3 »
% B 8 Xt g are taken. The order relation in S mneed not
necessarily be the one induced by some order relationm in T. It may
just be any convenient way of enumerating the elements of S.

The methodology of earlier papers is mnow briefly reviewed. Its
mathematical justification arises from the results stated in
section 2. Given a model, one defines a method for expressing (in
terms of the unknown vector, 6, of model parameters) the process
population autocovariances (PACV), Y ¢t ; ,t i . ti and tj in T. The
matrix Y¢ ; ,t j is the matrix of variances and covariances of
X t and X ¢ j . To simplify the notation, it will be written
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Y dgd unless otherwise indicated. One then restricts attention to
the PACV in S, and, for increasing subsets of S, one enters the
PACV parameters as block matrix entries in a sequence of matrices
M 5 wass lh . The matrix Fk incorporates the PACV parameters
for X t 41 ses09 Xt &k , k=1,...,n. From these PACV parameters
in S, one then computes a triangular system of matrix valued
¢ —parameters. The last of these parameters, in the discrete time
univariate case, reduces to the <corresponding <classical ©partial
‘autocorrelation, One then computes another triangular system of
matrix valued parameters, and on the basis of these, see (1.1) and
(5.1), one introduces a linear transformation from the vectors of
the observed sample and defines a new sample Y 1 , vwasX A

according to

i

X i =Z G35 ¥ 7 » I=liceesits (1.1)
1

j=

Strictly, one should write Y ¢ j for Y j , and L - j for

& 3,3 » The simplified notation of (1.1) will be made wuse of in
this paper although the notation X ¢ ; will be adhered to (rather
than X j ), as a continual reminder tﬂnt the sampling time instants
may be of irregular frequency.

Under two assumptions, one of which is to be relaxed in this paper,
one then proves the fundamental result that Y 1 , ..«,Y n are
uncorrelated. Thus, one can estimate unknown parameters by
minimising the sum of square of the Y-vectors with a nonlinear
optimisation technique. For Gaussian processes, this minimisation
is equivalent to the maximisation of the exact 1likelihood. This
leads to an algorithmic methodology for estimation and prediction,
aspects of which were explored in earlier papers. Further aspects
will be considered in this paper.

A certain condition made in theorems considered in [26] and [27] is
relaxed in section 2, allowing a much wider range of possible
applications to be considered.

Classical difficulties in relation to the modelling and prediction
of continuous time processes are highlighted in section 3. In
contrast, a novel approach is introduced in sections 4, 5 and 6. It

is based on the methodology defined earlier and makes a correct
use of stochastic differential equations models. A new heuristic
for identification is described and is based on blending
Monte—-Carlo technique with established <concepts. A rigorous

formulation of the prediction problem in <continuous time is
highlighted in a manner suitable for digital computing.

As by-products of the above, some further points are discussed.
Notwistanding the mathematical results so far obtained in the
literature, the two problems of discretisation of continuous time
processes and of timewise missing observations, become redundant.
This will result from the ability to handle irregular sampling
instants. However, the methodology does not purport to provide any
answer to the problem of missing values in a multivariate process
for which, at a particular instant of time, some (but not all)
components are missing, Finally, counter-examples relating to the
lack of wexistence (in general) of a Wold decomposition for
nonstationary processes are given, These examples demonstrate the
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need for considering some autocovariances as unknown parameters, as
they may not be computed from structural and white noise
parameters, This is in contrast to stationary processes. It also
is in contrast with some nonstationary autoregressive processes
studied in [14].

Applications to the analysis of physiological data are mentioned in
section 7 and some general comments made in section 8.

2. SOME GENERAL RESULTS.

The relaxation of a condition for a theorem in [26],[27], namely
theorem 2.1 below, as well as the statement of other general
results, will Dbe dealt with first in this section, Some
counter—examples are then considered inm relation to the Wold
decomposition and the specification of a minimum set of wunknown
parameters.

Some notation is first defimned. Y (k) denotes the block column
vector whose block components are Y 1,k ,..., Tk,k . If m<k,
Y (m),(k) is the column block vector made up of the first m block
components of Y (k) . A similar notational <convention is assumed
for any other block vector, without further reference. O (x) is a
column block vector made up of zeroes. I ¢ is a matrix made up of
k copies of I along the main diagonal, where I is the wunit matrix
in d dimensions. Matrices considered are partitioned along the last
block row and column. Y x » A k Hk and A k denote , for each
k, the partitioned matrices:

1
2
I k-1 |0 (k-1) I k-1 IY (k-1),(k) Yx,x |,
L Ay =
-3
0" (x-1) | ¥ x,k 0’(k—1)| I
r =¥
" k-1 ]Y (k-1),(x) YEk,k|
b 5 = Jp. .
=F
Y,k Y (k-1), (k)| T
where Gk—l is defined as
-] -
6 g-1 =Tx-1 - Y(x-1),(x) Y k,k Y (k-1),(k) - (2.1)

It is then readily checked that

. of = q - s
My , T g =¥ Ty ¥ =¥ Ay 8 A g ¥% (2.2)

x = b by

The Intermediate Variable Autoregression (IVA) parameters are
defined as the block entries of ¢ (x) , where

Ty ¢ (x) = Y(o),(k+1) , k=1,...,(n-1), (2.3)
The last block component ¢ k,k of ¢ (k) is called the Generalised

Partial Autocorrelation (GPA) of order k. As in the «case of a
univariate weakly stationary process, this parameter reduces to
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what is classically known as the partial autocorrelation of order k.
Again,in the case of a univariate weakly stationary process, the
first (k-1) entries of Y (k) appear in the classical computation of
the partial autocorrelations when using the Levinson-Durbin
algorithm, [10], but do not seem to have so far ©been given any
particular name. It is remarked in [15] that these quantities, in
the univariate weakly stationary case and up to a multiplicative
factor, are playing the role of regression parameters in a series
of autoregressive models of increasing order. For this reason, they
are called here intermediate variable autoregressions (1IVAa),
reserving more appropriately the 1label Variable Autoregressions
(VA) to related quantities not formally wused in this paper,
However, a hint is now given as to the definition of the VA
quantities., They are the parameters in a linear regression of
increasing order of the X-vectors, regressed over previously
observed X-vectors, and using the Y-vectors of (1:1) as
innovations, In the wunivariate ~case, the VA parameters are
multiples of the IVA parameters, while in the multivariate case,
they are obtained from the IVA parameters by pre-multiplication
with specified matrices. It may be noted that in the nonstationary
univariate case the GPA coefficients no longer have the <classical
property (possessed by correlation coefficients) of ©being between
+1 and -1, They however still have the property of being a multiple
of the conditional covariance of X t g and X tn when
intermediate (timewise) variables are maintained fizxed. As such,
for a not necessarily weakly stationary and not mnecessarily
univariate autoregressive process of order p, the GPA defined
through (2.3) are easily checked to be =zero from order (p+1)
onwards.

The following matrices will also be found useful:

Hk =Y k+1,k+1 - Y'(k),(k+1) ¢ (k)
=Y k+1,k+1 - ¢ (k)Y (K), (k+1) (2.4)
-1 -
Lx =1x - 9 (k) Y k+1,k+1 ¥ (k),(k+1). (2.5)

The inversion of [y is dealt with next.

-1
Lemma 2.1. If H x-1 &exists, then

(1) E'x =Y kst k41 [T+Y 70 ka1, k41 Y7 (k)L (k+1) Llg ¢ (k) ]
(ii) Ll =T g+ ¢ (x) Bk Y (x), (k+1)
§7%-1 0 (x-1)
(iii) A-i = , where
0 “(x-1) l I
6F =y Ty =T sy BE Y4 .

Proof. By application of (2.5) and using a formula attributed to
Woodbury, see [17].

-] -
Lemma 2.,2. If H k-1 and T i-l exist, then for k>1,
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I‘—l
3 k-1 0 (x-1)

¥k = +

0 (x-1) I I

-1 - - | <l
¢ (x-1) B k-1 % (x-1) , L k-1 ¢ (x-1) Y.k

&1 » -1 -1 4 - -1 -1
=Y k,k ®(x-1) L k-1 |Y k,k +Y k,kY (k-1),(k) L k-1 ¢ (k-1)Y k,k
Proof. From lemma 2.1, noticing that

- I k-1 l - Y(k-1),(kx) ¥ k,k

0 (x-1) l I

one can then show that I“1k—1 is equal to

-1 -1 % -l
§7%-1 l -8 k-1 Y(x-1),(x)Y k,k

-1 -1 - 1 -1

1 A =
Y,k + YV kK (k-1), ()% k-1Y (k-1), (X) Yk, k

- -1
- Yk, K (k-1), (k)8 k-1

which leads to the required result.

The statement of the following conditions will be found wuseful in
introducing some generalisation of a theorem in [26],[27].

Condition (A). The inverse of H k-1 and ! k-1 exist, for k=2,...,n.

Condition (B), Y (x-1),x) ¢ (x-1) 1l < Ny x,x 1l
the norm of a matrix A being defined as Al = supllAull , for |ul=1.

Both conditions were made in [26],[27] for the statement of theorem
2.1 there. Condition (B) is relaxed in theorem 2.1 below.

Theorem 2.1. Assume that only condition (A) is wvalid. Then, for
k=1,...,n, the inverse of 'y is given by

1 -1 - -1
I g-1 |0 (k-1) ®(k-1) H k-1% (x-1) I - % (x-1) H k-1
+
- ' =1 - -1
0 (k-1) I -B x-1% (x-1) H k-1

Proof. First one shows that
-1 -1 -1
L k-1 ®(x-1) Yk,k = ¢ (k-1) H k-1 . Indeed,
=1 -1
L k-1 ¢(x-1) Y k,k Hg-1

| o | 2
= L k-1 $(x-1)Y .k [V g, k-7 (-1).(%) ¥(x-1) 1]

e -1 s
Lx-1 [T k-1 - -1 x,x7 (x-1),(x) 1¢ (x-1)



