Decker & Hirshfiel&

The Analytical Engine
An Introduction to Computer Science Using

HyperCard 2.1

Second Edition

THE ANALYTICAL ENGINE

An InTRODUCTION TO COMPUTER SCIENCE
Usine HyperCarp 2.1

RICK DECKER
STUART HIRSHFIELD

Hamilton College

%® PWS PUBLISHING COMPANY
BOSTON

PWS Publishing Company
20 Park Plaza, Boston, MA 02116-4324

Copyright © 1994 by PWS Publishing Company
Copyright © 1990 by Wadsworth, Inc.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any form or by
any means—electronic, mechanical, photocopying, recording, or otherwise—without the prior written permission of
PWS Publishing Company.

PWS Publishing Company is a division of Wadsworth, Inc.
(TP ™

International Thomson Publishing
The trademark ITP is used under license.

@ This book is printed
on recycled, acid-free paper.

Apple, the Apple logo, ImageWriter, LaserWriter, and MacPaint are registered trademarks of Apple Computer, Inc.
HyperCard, HyperTalk, Macintosh, MultiFinder, and Stackware are trademarks of Apple Computer, Inc.

Some of the icons in this book were derived from other sources. The authors wish to thank the original creators for grant-
ing permission for their use:

© 1989 by Bryan McCormick, Pleasant Hill, CA, all rights reserved; PrintDoc XCMD © 1988 by Ignatz Software;

Flame Icons © 1989 by Radical Sheep Inc.; Files XFCN © by Guy de Picciotto.

© 1989 by Marc Harrison, Pleasant Hill, CA, all rights reserved.

© 1987 Heizer Software, Pleasant Hill, CA, all rights reserved.

Seventh Wave Technologies, Newport News, VA.

Some screens © Apple Computer, Inc. Used with permission.

Library of Congress Cataloging-in-Publication Data

Decker, Rick.

The analytical engine: an introduction to computer science using Hypercard 2.1/ Rick Decker, Stuart Hirshfield—2nd ed.

p. cm.

Includes bibliographical references and index.

ISBN 0-534-93696-2

1. Electronic digital computers. 2. Macintosh (Computer)—Programming. 3. Hypercard (Computer file). 1. Hirshfield,
Stuart. IL. Title.
QA76.5.D37 1994 93-25430
004—dc20 CIP

Sponsoring Editor: Michael J. Sugarman
Associate Developmental Editor: Susan M. Gay
Editorial Assistant: Ken Morton

Production Editor: Abigail M. Heim
Manufacturing Coordinator: Ruth Graham
Interior Designer: Abigail M. Heim

Cover Designer: Sally Bindari, Books by Design
Compositor: Pure Imaging

Cover Printer: John P. Pow Co., Inc.

Text Printer and Binder: Courier/Westford

Printed and bound in the United States of America
94 95 96 97 98—9 8 7 6 5§ 4 3 2 1

PREFACE

THE A& COURSE

What you have in your hands represents a departure from the traditional
introduction to computer science textbooks. Indeed, we have coined the
term “CS 0” to describe the course that this text/disk package embodies.
Because this package is different, a few words of introduction and encour-
agement are in order.

We wrote the text and prepared the lab disks for the same reason we sus-
pect many other authors do: We simply couldn’t find an existing package
that suited our needs. As at many other schools, our introductory course
was a programming course that served two audiences: those who wanted
an introduction to the subject and those who intended to major in com-
puter science (or at least take some courses beyond the introductory level).
And, as at many other schools, this approach simply didn’t work well. Be-
cause of the wide range of talents and backgrounds of the students we were
constantly performing a balancing act, trying to move slowly enough not to
lose the bottom half of the class and quickly enough not to bore the stu-
dents with some prior experience. The bimodal nature of the course was
difficult to deal with, both for us and the students. Even more problematic
was our perception that students were finishing the introductory course
with the firm impression that computer science was nothing but program-
ming. This attitude did a disservice to those wanting a taste of the discipline
and frequently left our majors in shock when they later discovered that be-
ing a programming whiz counted for little in their subsequent courses.

“You get too soon old and too late smart,” the saying goes. Having
taught a programming introductory course for seven years, we finally real-
ized that something had to be done and, more importantly, we realized that
what had to be done was something that hadn’t been done before, at least
not in computer science. Consider introductory courses in other
disciplines—English 101 does not consist solely of having the students
complete writing exercises; of course, the students typically have a number
of essays to write, but they are also exposed to the broad historical trends
in literature, they are introduced to the forms of literature, and they are
given the critical apparatus necessary to make sense of the material they

XV

XVi

PREFACE

read. The students enrolled in Physics 101 are likewise learning to manipu-
late laboratory equipment while being exposed to the material in context—
perhaps learning about Galileo, Maxwell, and Einstein, certainly exploring
the major divisions of the subject, and being exposed to the social, political,
and moral implications of the use and misuse of physical discoveries.

Introductory courses in computer science, on the other hand, typically
tend to suffer from one or more major shortcomings:

* Equating computer science with programming. One of the things we
hear again and again from our students is the mistaken idea that
computer science is programming. Of course, computer profession-
als do write programs from time to time. Computer science, though,
steps back from programming and, like physics, seeks to formulate
and understand the general principles that govern the objects of its
study, which for us are computers and their programs. The study of
computer science is related to writing programs in somewhat the
same way that the study of music is related to the production of
songs. The product is important, but the study of the principles be-
hind the product is vastly more so: It is nearly impossible to produce
the product without some understanding of the principles.

* Confusing training with education. Another popular form of the in-
troductory course is what we might call “Getting Acquainted With
4th Dimension, WriteNow, and Excel.” A slightly more elevated ver-
sion of this course also exists in the form “So You Want a Career in
MIS?” Neither version has much to do with the discipline of com-
puter science, and, given the rapid advances in the field, both run the
risk of providing specific training in technologies that will be out of
date by the time the students graduate.

* Concentrating on effects at the expense of causes. In an attempt to
avoid alienating their audience by introducing technical material,
some introductory courses sidestep computer science almost entirely,
stressing instead the social consequences of the computerization of
society. Done poorly, such a course can become what one of our col-
leagues calls the “People Magazine Goes to MIT” approach. Done
well, though, this approach can be valuable. We feel that it is impor-
tant for every citizen to be aware of the possible consequences of the
use of technology, but we also feel that to understand the implica-
tions of technology it is necessary to understand the technology it-
self. We believe that along with questions of what computers should
and should not do, our students should also be aware of what they
can and cannot do, both by virtue of the current state of the art and
theoretical limitations.

We set out to design a true survey course, presenting a serious disciplin-
ary point of view, firmly grounded in a liberal arts tradition. The collective
experience of the authors (we have taught this course for five years now),

PREFACE xvii

our students, and our many faithful adopters seems to indicate that this
approach—the Z approach to CS 0—overcomes the aforementioned
shortcomings while serving all of the course’s constituencies.

THE TEXT

This second edition retains the basic organization and outline of the first.
The arrangement of the topics proceeds first downward, to increasingly
concrete points of view, and then up, returning to increasingly more gen-
eral levels of abstraction—a kind of Divine Comedy itinerary.

Module 1 provides a historical orientation, describing the technological
history of computers in the context of increasing use of technology, begin-
ning with the Industrial Revolution. The lab portion of this module is de-
voted to an introduction to the Macintosh and HyperCard. Module 2
discusses some computer applications—the familiar (calculators, word
processors, and spreadsheets) as well as some more specialized and less fa-
miliar ones in medicine, the sciences, and education. This module con-
cludes with an introduction to some social implications of computer use, a
theme that is continued in Module 9. The lab part of this module provides
the students with hands-on experience with HyperCard implementations
of a simple word processor, a spreadsheet, a graphing calculator, a DNA
pattern-matching stack, and arithmetic flash cards.

Modules 3 through 6 lead the students deeper into the inner circles of
the abyss. Module 3 discusses system design, using the example of the user
interface. At this level the focus is on combining components with fully de-
veloped functionalities into a smoothly functioning system: A program be-
gins to become less of a “black box™ and the details begin to be apparent.
The lab part of Module 3 is devoted to the authoring level of HyperCard;
the students have a practice stack that provides a tutorial on stack design,
fields, and buttons. The lab concludes with a restaurant guide stack that
the students are asked to customize.

In Module 4 the gray box becomes a clear box: Students are introduced
to programming by inspecting scripts of existing stacks and writing scripts
of their own. We discuss most of the canonical programming constructs as
well as algorithm design, and we take students through a simple software
life cycle, using the lab stack as an example. The lab portion of this mod-
ule provides an accounting application with sorting and searching capabil-
ities. The students are directed to modify and expand this stack.

Module 5 deals with program translation. The important idea here, of
course, is that since a computer can only execute programs in its own ma-
chine language, a source program in HyperTalk must be translated into ma-
chine language to be executed. We discuss the problem of representing text in
binary form and provide an assembler for a hypothetical computer. The labs

Xviii

PREFACE

for this module follow the pattern of all subsequent labs: Now that the stu-
dents have been introduced to programming, they not only can run the labs
to reinforce the text material, but they can also inspect and modify the scripts
of the lab stacks. The first lab stack is a text-to-ASCII-to-binary converter,
and the second is an assembler for the simulated computer.

Module 6 concludes the progress toward the concrete by describing how
the hardware of a computer works. Starting with switches, we construct
gates, which we combine to construct logic, arithmetic, and memory cir-
cuits. Finally, we use the circuits to build the small computer that was only
hypothetical in Module 5. The lab stack for this module is a simulated
breadboard that the students can use to design and test circuits of their own.

Modules 7, 8, and 9 ascend from the most concrete, physical level to
the most abstract and general. In Module 7 we make two points: First,
that before there were physical realizations of computers, there were ab-
stract, mathematical ones; second, that the physical machine is in some
sense nonessential when thinking about the nature of programs and com-
putation. We introduce the Turing Machine, discuss the ideas of encoding
strings and programs, and show that there are infinitely many tasks that
computers cannot do, not only because there are uncountably many input-
output matchings and only countably many programs, but also because
there are tasks (like the Halting Problem) that seem natural candidates for
computer solution but are simply impossible to program. The lab for
Module 7 is a Turing Machine simulator.

Module 8 is a segue, via Turing, from questions of what computers can-
not do to what they might do. We use Arthur C. Clarke’s HAL 9000 com-
puter as a standard against which we view the current state of affairs in
artificial intelligence research. The lab stacks include a poetry generator
and a simulated optical character recognizer.

Finally, in Module 9 we look at things to come. We identify the major
trends in computer use and try to see what the implications of these trends
might be, guided at all times by a knowledge of how difficult it is to pre-
dict the future. The lab stack, an ATM simulation, serves to demonstrate
the basic concepts of security, privacy, and maintenance as they apply to
computer systems and networks.

NEW TEXT FEATURES FOR THE SECOND EDITION

While the topical organization of the text has remained intact from the
first edition, this second edition is indeed “new and improved” in a num-
ber of important ways. The changes we chose to incorporate reflect the ex-
pressed preferences of our “users”—that is, the students and faculty who
have used the package in the classroom. In a nutshell, the new features of
the text include:

* Lab exercises that are “folded into” the text material for each mod-
ule: The first edition had this feature in only two of its nine modules.

PREFACE Xix

It worked so well in those modules to better integrate the lab and the
text (and also to break up long blocks of text) that we decided to do
it throughout the book.

e More detailed lab exercises, many involving writing: One by-prod-
uct of “folded-in” lab exercises is that many of the exercises could
be rewritten to concentrate on particular sections of the text. As a
result, the exercises are much more thorough and relevant to the
text. Also, a number of new exercises have been written that ask
students to write out English comments about particular lab experi-
ences.

o A textual version of balloon belp: In the dual interests of highlight-
ing points made in the text and making it easier to find subsections
of the text, we have added marginal notes (in the form of “balloon
help,” a la System 7).

e No presumptions about computing environment: The primary mo-
tivation for including a System Folder and HyperCard with the first
edition software was to provide students with a “turnkey” environ-
ment. We now recognize (thanks to our adopters!) that this was a
mistake. Every user of the package operates in an ever-so-slightly
different environment with a complex combination of machine
models, disk drives, system folders, and network connectivity. The
new edition of the text is, as a result, decidedly less prescriptive
about such matters. For example, the Quit button that appears on
all &£ stacks no longer shuts the machine (and potentially your net-
work!) down, but rather politely quits HyperCard and returns to
the Mac desktop.

SUPPLEMENTARY MATERIALS

The Instructor’s Manual includes transparency masters, and may be or-
dered (by instructors only) separately or with a Sample Student Program
Disk, which contains stacks created by student users of the text.

THE A& STACKS

This is a lab-based course. It might be possible to offer this course without
a lab component, but we think it would be a serious mistake to do so.
Computer science, like the other physical sciences, is a lab science. It is
also a contact, rather than a spectator, sport. The disk that comes with the
text contains all of the HyperCard stacks referenced in the text and lab
modules. As long as you have access to HyperCard (version 2.0 or higher),
and a Macintosh that will run it, you are in business.

XX

PREFACE

The lab-based nature of the course was dictated by our experience with
computer labs in an introductory computer science course at Hamilton
College over the past ten years. We could talk forever about our discipline,
but the best way for you to understand what we’re talking about is to have
hands-on experience, the more the better.

Interwoven with every text module, in addition to a variety of pencil
and paper (keyboard and screen?) exercises, is a collection of directed lab
exercises. These exercises are based on the disk materials that accompany
the text and are central to the course. In the process of accomplishing the
exercises, students will experience first-hand a word processor, a spread-
sheet, a database system, a logic breadboard, an assembler, a Turing Ma-
chine simulator, a poetry generator, and more. All of these programs were

designed to support the text directly, and all were written using Hyper-
Card.

Note: See the Appendix for a detailed description of the Analytical Engine
disks, its setup and use.

Why HyperCard, you ask? In our opinion, HyperCard is the first com-
mercially available program to offer software capable of supporting a true
survey course. First and foremost is the fact that HyperCard provides a
medium in which students can use the computer in interesting and creative
ways without being programmers. Simply by learning how to navigate
through and edit HyperCard stacks, one can develop an appreciation for
how computer applications and languages work, how they are designed,
and how they interact to form computer systems. The applications that the
students use, design, and edit can then be examined from the perspective
of programming by clicking the Macintosh mouse to examine the underly-
ing programs. This approach is in marked contrast to the heretofore stan-
dard model that required students to spend an entire semester learning to
write a program to perform a calculation that they could have solved in a
few minutes using paper and pencil.

Programming a computer provides students with many valuable in-
sights into how a computer works and how a computer scientist thinks.
After all, if computer science is concerned in part with the study of pro-
grams, as we’ve said, what better way to begin than by having our stu-
dents write some programs on their own? Our experience has been that
for the audience of a survey course, where we assume no prior program-
ming experience, the programming process itself is tough enough without
having to master the mass of syntactic details of a language. Along with its
many other capabilities, HyperCard includes a programming language,
HyperTalk, which is distinguished by its very natural syntax. HyperTalk
programs read almost like collections of English statements, enough so
that if you leave out a word, HyperCard has at least a fighting chance of
figuring out what you meant and instructing the Mac to do it.

PREFACE XXi

NEW SOFTWARE FEATURES FOR THE SECOND EDITION

Almost by definition, software becomes outdated as soon as it is released,
and the collection of & stacks that accompanied the first edition was no
exception. While we were (and remain) quite pleased with the original
text, we knew that the first edition of the software could be improved. The
fact that the original software won an award from EDUCOM for curricu-
lar innovation has not stopped us from making significant revisions and
improvements, as follows:

o All £ stacks (and associated lab exercises) have been rewritten from
scratch to take advantage of HyperCard version 2.1 (but can be used
with version 2.0).

e Functionality and error-checking have been improved for many of
the original stacks. For example, spreadsheets and Logg-O circuits
can now be saved to and retrieved from disk, Logg-O now accom-
modates combinational circuits, and all stacks that create data files
also now create file signatures that ensure that only appropriate data
can be opened.

o The less inspired of the original stacks have been eliminated and re-
placed with more motivating, better-implemented ones. Gone are
Zpplications, Calendar, Practice, Little Mac Book, DR, and DR
No!. Newly created, and supported by lab exercises, are GraphiCalc
(a graphing calculator), Fitted Genes (the aforementioned DNA pat-
tern-matcher), Flasher! (the aforementioned flash cards), Bill’s Diner
(a restaurant guide), £ Workbook (an updated version of the origi-
nal Practice stack), HyperChars (an OCR simulation), and £TM (a
banking machine).

o New utility-like stacks have been written. These introduce and pro-
vide students with the ability to incorporate animation (Art Show)
and Macintosh resources (sounds, icons, and cursors, in stack Very
Resourceful) into their stacks.

SCOPE AND ORDER OF TOPICS

We have made some very deliberate choices in choosing material for and
organizing this text. Even a casual review of the table of contents gives the
impression that the text covers a great deal of material. It does! One of our
early decisions was to commit errors of commission, as opposed to those
of omission. To be sure, there is more material in our text than can be cov-
ered in a semester course at most schools—including our own. (As indi-
cated by the sample syllabus below, our version of the course pays only
casual attention to many of the topics [Module 7, for example] and ig-

XXii

PREFACE

nores others altogether [the Pip material in Modules 5 and 6]. This reflects
both the interests of our audience and our curriculum.) On the other hand,
we have not devoted entire modules to specific “hot” computer applica-
tions (except, of course, HyperCard). We have included what we regard as
the core material of the discipline—material that is principled and resis-
tant to change—and there is a lot of it.

The order of presentation of the topics reflects the lab orientation of the
course. We want students to learn by doing, as well as by reading and
thinking. The progression in Modules 2 to 6 from a black box, to a gray
box, to a microscopic clear box, gives the students experience with a com-
puter at a particular level of abstraction before taking them down to the
next level. Having just used application stacks, students can customize
them, evaluate user interfaces, and design their own. Having just designed
a stack, they can click on a button and see the programs that underlay it.
After using HyperTalk, students wonder how it is that the computer un-
derstands such a high-level language. The “language” that the machine
understands is logic, and the Module 6 lab convinces most students that
logical devices can be built to accomplish a number of interesting tasks.
Having seen how the machine does what it does, and with a base of prac-
tical experience, it is then appropriate to question, as we do in Modules 7
to 9, the machine’s theoretical limitations, the current boundaries of the
discipline, and the social implications of the technology.

Also as a result of the lab orientation, this text is more tightly struc-
tured than many others. Using “depends on the material from” as a rela-
tion on the set of modules in this text, we find that the text is linearly
ordered. We know that our order of presentation is not the one everyone
would use, and we make no apologies about that. You can teach program
translation after hardware or reverse the order of presentation of the en-
tire text, if you wish, but be aware that in doing so you run the risk of
dangling forward references. If you have good luck with a different order,
let us know.

Hamilton College has 14-week semesters. Our syllabus for this course
looks like this:

Module 1: 2 lectures, 1 lab include a Mac tour for novices

Module 2: 2 lectures, 1lab ~ demonstrate a variety of Mac applications
Module 3: 4 lectures, 2 labs use the lab stacks to discuss design
Module 4: 4 lectures, 2 labs review scripts of familiar stacks

Module 5: 3 lectures, 2 labs ~ (Pip material is not covered)

Module 6: 3 lectures, 2 labs

Module 7: 2 lectures, 11ab use lab stack in casual, high-level coverage
Module 8: 3 lectures, 1 lab ~ show 2001: A Space Odyssey

Module 9: 2 lectures, 1 lab

This syllabus provides 38 class meetings, leaving the rest for exams, addi-
tional lab sessions, and supplemental material (including scores of relevant
films and tapes). Of special note is the series of video tapes entitled “The

PREFACE XXiii

Machine That Changed the World,” aired on PBS and produced in part by
the ACM. The five tapes in the series (available as a set at a very reason-
able cost) fit almost perfectly with our modules 1, 2, 3, 8, and 9, respec-
tively, and help to bring the associated topics alive for our students.

PERORATION

Although this project was in many ways our creation, it would not exist in
its present form without the contributions of many talented and dedicated
people, each of whom influenced the final product in some significant and
positive way. Our thanks go out to the following people for their insightful
reviews of the original manuscript: Professors Dwight Barnette, Virginia
Polytechnic Institute; Lee Bryant, SUNY, Geneseo; Scott Drysdale, Dart-
mouth College; Jim Gips, Boston College; Gordon Goodman, Rochester
Institute of Technology; Will Goodwin, University of Oregon; Dan Kimura,
George Washington University; Joan Krone, Ohio State University; Curt
Lauckner, Eastern Michigan University; Henry Leitner, Harvard University;
Jeff Naughton, Princeton University; Jeff Parker, Boston College; Ellie
Quinlan, Ohio State University; Allen Tucker, Bowdoin College; and Henry
Walker, Grinnell College; and also to the reviewers of the second edition:

Anselm Blumer Joseph O’Rourke

Tufts University Smith College

Bill Chen Barbara Boucher Owens
University of Hawaii at Hilo St. Edward’s University
Matthew Dickerson Jane M. Ritter
Middlebury College University of Oregon
Batya Friedman Robert Roos

Colby College Smith College

Otto Hernandez Scott Smith

Atlantic Community College SUNY, Plattsburg
Jacquelyn Jarboe Peter Wegner

Boise State University Brown University
Lawrence S. Kroll Robert J. Wernick

San Francisco State University San Francisco State University

Kenneth L. Modesitt
Western Kentucky University

The changes made to produce this second edition result in a package
that is, we believe, significantly improved. The second edition is more con-
temporary, cleaner, better tuned to our students, and even more empower-

XXiv

PREFACE

ing for them than was the first. For these improvements, we are also
deeply indebted to those instructors who have shared their £ experiences
with us, to our students of the past five years, and to Frank Ruggirello,
Mike Sugarman, Susan Gay, J. P. Lenney, Nathan Wilbur, Helen Walden,
Abby Heim, Liz Clayton, Ken Morton, and Ed Murphy for trusting us.

Rick Decker
Stuart Hirshfield

CONTENTS

Module 1
11

1.2

1.3

1.4

1.5
1.6

A HISTORY OF COMPUTING 1

INTRODUCTION 1

Text Objectives |
The Miraculous Machine 1
Metaphor: The Analytical Engine 2

A Stacks: The Starter Stack Is Just the Beginning

Lab Objectives 3

ORIGINS 3
Skilled Machines 4
The Weaver of Algebra 6

Review Questions 8
Lab Exercise 1 9

HANDLING THE INFORMATION EXPLOSION

The Birth of Computers, From A to Z 12
Military Computers 13

Review Questions 15

Lab Exercise 2 15

GENERATIONS 17

Today 20
Review Questions 20
Lab Exercise 3 21

EXERCISES 21
ADDITIONAL READINGS 23

Module 2
2.1

APPLICATIONS AND IMPLICATIONS

INTRODUCTION 24

Text Objectives 24
The Computer as a Tool 24

3

1

24

Vi

2.2

23

24

2.5
2.6

CONTENTS

Metaphor: The Calculator 26
& Stacks: Applications Galore 29
Lab Objectives 30

FAMILIAR MICROWORLDS 30

The Word Processor 31
Lab Exercise 1 33

The Spreadsheet 39
Review Questions 41
Lab Exercise 2 41

THE STATE OF THE ART a4

Business Applications 44
Numerical Applications 46

Lab Exercise 3 49

Applications to the Professions 52
Lab Exercise 4 55

Applications in Education 57
Review Questions 58

Lab Exercise 5 59

IMPLICATIONS 60
Diminishing Skills 61
Productivity 61
Information Technology 63
Review Questions 65

EXERCISES 65
ADDITIONAL READINGS 67

Module 3
3.1

3.2

DESIGNING FOR USE 68

INTRODUCTION 68

Text Objectives 68

The User Interface 68

Metaphor: The Hippogryph 69

A Stacks: A Workbook, an Example, and Some Extra Tools
Lab Objectives 71

PEOPLE AND MACHINES 72

Evolution of the User Interface 72
Guidelines for System Design 75
Data and Programs 78

Review Questions 79

Lab Exercise 1 79

70

3.3

34

3.5

3.6
3.7

CONTENTS

ANATOMY OF ASTACK 79

Cards and Backgrounds 80
Fields 81

Buttons 82

Review Questions 83

AUTHORING 83

Menus 85

Manipulating Objects: The Heart of Authoring 87
Lab Exercise 2 93

Fields 93

Lab Exercise 3 95

Buttons 96

Lab Exercise 4 97

Painting 98

Review Questions 106

Lab Exercise § 107

DOING IT RIGHT 107

Review Questions 111
Lab Exercise 6 112

EXERCISES 113
ADDITIONAL READINGS 114

Module 4

41

4.2

4.3

PROGRAMMING: CORDON BLEU COMPUTER
SCIENCE 116

INTRODUCTION 116

Text Objectives 116

The Algorithm Machine 117
Metaphor: The Electronic Kitchen 117
A Stacks: No Account 118

Lab Objectives 118

SCRIPTING WITH NO ACCOUNT 119

Lab Exercise 1 121
Lab Exercise 2 124

INFORMATION: APPLES, HONEY, AND FLOUR 124

Simple Information 125
Structured Information 128
Review Questions 130

vii

viii

44

4.5

4.6

4.7

4.8

4.9
410

CONTENTS

INFORMATION PROCESSING: TOSS, BLEND, AND DRIBBLE

Moving Information 130
Manipulating Information 131
Review Questions 135

Lab Exercise 3 135

LOCAL CONTROL: UNTIL GOLDEN BROWN 136

Review Questions 144
Lab Exercise 4 144

UNIT-LEVEL CONTROL: RICK AND STU'S FLAKY PIE CRUST

Messages and Handlers 145
The Object Hierarchy 148
Script-Generated Messages 151
Lab Exercise § 154

INFORMATION CONTROL: AT 425 DEGREES FOR 40 MINUTES

Review Questions 158
Lab Exercise 6 158

PROGRAM DESIGN: RECIPES OF YOUR OWN 158

The Software Life Cycle 159
Specification 159

Design 160

Coding 162

Testing 163

Maintenance 165

Review Questions 165

Lab Exercise 7 165
Extended Lab Exercise 166

EXERCISES 166
ADDITIONAL READINGS 169

Module 5
5.1

PROGRAM TRANSLATION 170

INTRODUCTION 170

Text Objectives 170

The Binary Machine 171

Metaphor: The Rosetta Stone 171

A Stacks: Howard Stone Meets Apple MacPippin 172
Lab Objectives 174

130

145

155

