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Preface

I have taught algebra for undergraduates or graduates at Zhejiang University for
several years. During this period, I have used several different textbooks for my
teaching. However, I found that there was no suitable textbook for my teaching.
This is exactly the motivation to write this book. This book is intended to pro-
vide a reasonably self-contained theory of basic algebra suitable for an introductory
course. The text consists of five chapters which are designed for a one-semester
course taken by the students who have learned linear algebra. All contents in this
book are standard and essential as an introductory course in algebra. There is a
fairly large number of examples to help the readers understand the contents of this
book. Hopefully, these examples will make the theory more alive, more meaningful,
more visual, and easier to be grasped. Moreover, there is a series of exercises at the
end of each section. Some of the exercises test the understanding of the text in the
usual way, while some are arranged as a supplement and extension of the contents
in this book. The reader is involved in providing proofs and working on problems
that have not been completely solved in the text; and furthermore, they are asked
to extend some of the theories which are essential for further study.

I have striven to craft the text that presents some concepts at the center of alge-
bras in a coherent, tightly knitted way. I believe that there are enough challenging
problems. Needless to say, several aspects of this book are experimental, I would be
very grateful for critical comments and suggestions from the people who used it.

Acknowledgments This book is partly supported by the national natural sci-
ence foundation of China(No.11171296), ZINSF (No. LZ 14A010001), Department
of Mathematics, and Graduated school of Zhejiang University. The author would
like to thank Department of Mathematics, and Graduated School of Zhejiang Uni-
versity for their constant support and help. He is deeply indebted to many of his
students and colleagues for their ideas and encouragements during the preparation
of this book. Finally, the author apologize to many authors whose works we have
used but not specifically cited. Virtually all of the results can be found either in
books or articles which are listed in our bibliography.

Notations We fix some notations which are used throughout the book. Q, R,
C, P are the rational number field, the real number field, the complex number field,
and a number field respectively. H is the quaternion division. Z,, N, Z are the
set of all positive integers, nonnegative integers, and integers respectively. M, (A)
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is the set of all n x n matrices with entries in A. Suppose A contains the elements
1 and 0. Then F or E, is the diagonal matrix diag(l,---,1) € M,(A), which is
an identity matrix of M,(A). &;; is the Kronecker symbol, that is, d;; = 1, and
8;; = 0 for any i # j. For any set X, | X| is the cardinal of X and idx : X — X,
z — z is the identity mapping. Suppose f : A — B is a mapping, and C C A.
Then flc : C — B, # — f(z) is denoted as a restricted mapping of f, and we
also say f is an extension mapping of f|c. A commutative diagram is a diagram
of sets (also known as vertices) and mappings (also known as arrows or edges)
such that all directed paths in the diagram with the same start and endpoints lead
to the same result by the composition of mappings. For example, the diagram

Al—fl—vBlLCl

%l ‘pzl (p3J' is commutative if w2 f1 = @1 f2, @391 = g2p2. It is not

Ay f2 B, 92 C,

commutative if one of these two equations fails.

Wu Zhixiang
Feb., 2014
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Chapter 1
Groups

The concept of a group is of fundamental importance in algebra and other subjects.
We say two groups are the same if they are isomorphic. Just as classifications of
finite-dimensional vector spaces over a number field, one of the fundamental question
in group theory is to classify all groups up to isomorphism of groups, which means
to find a necessary and sufficient condition for two groups to be isomorphic. This is
a very complicated question. However, a larger amount of miscellaneous information
on structure of a group has been explored in this chapter.

1.1 Semigroups, monoids and groups

Let’s first recall some known binary operations. For example, for any two n x n
matrices A, B over the complex number field C, we can define binary operations of
A and B, such as A+ B, A — B and AB. For any two mappings f : X — Y and
g:Y — Z, where X, Y and Z are nonempty sets, we can define the composition
of fand gby go f: X — Z, z — g(f(z)). A binary operation on a nonempty set
S is a mapping from S x S to S, where S x S := {(a, b)|a,b € S} is the Cartersian
product of S. Under this map, there is only one element in S corresponding to each
(a,b) € S x S. The unique element is usually denoted by a - b, simply denoted by ab
sometimes.

Definition 1.1.1 A binary operation on a set G is to be associative if (a-b)-
c=a-(b-c) for any a,b,c € G. A semigroup is a nonempty set G together with
an associative binary operation - on G. The binary operation of a semigroup G is
usually called the product, or multiplication of G.

Example 1.1.1  Let N be the set of all natural numbers. Then (N, +) with
addition of numbers and (N, x) with multiplication of numbers are semigroups.

It is well known that h-(g - f) = (h-g)- f for any mappings X Loy5 zhw.
For any nonempty set X, XX := {f|f is a mapping from X to X} is a semigroup
with composition of mappings.

Let M, (P) be the set of all n xn matrices over a number field P. Then (M,,(P), +)
with usual matrix addition and (M, (P), -) with usual matrix multiplication are semi-
groups. (M, (P), —) with usual matrix subtraction is not a semigroup.
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a+by/=1 c+dv/-1 } . .
= d,c,d € R . Then H is a semigrou
Let H : {( et dV=T a-by=T la,d,c en group

with matrix addition. It is also a semigroup with matrix multiplication. H is called
a quaternion division.

Suppose § is an open subset of R? and xp € € is a fixed point. A loop with a fixed
point z in € is a continuous mapping ¢ : [0, 1] — § such that ¢(0) = (1) = zo.
Let L be the set of all loops with a fixed point zg in 2. Define ¢1 - ¢2(t) = ¢1(2t) if

1 .
0<t< %, d1 - da(t) = ¢pa(2t — 1) if 5 <t < 1. It is easy to check that L is not a

semigroup with this binary operation -.

Example 1.1.2 Given any nonempty set A. Let S(A) be the set of all
finite sequences (or strings) of elements from A. Then elements in S(A) are also
called words over A, or words with alphabets in A. Then S(A) becomes a semigroup
with the string concatenation.

Definition 1.1.2  An element e of a semigroup S is called an identity of S
provided that ea = ae = a for all a € S. A monoid is a semigroup with an identity.

Suppose e, eo are identities of a monoid M. Since e is an identity, e; = ejea.
Similarly, ez = ejez. Hence e; = e3. Thus a monoid has a unique identity. We denote
the unique identity of a monoid by e in this chapter unless otherwise specified. If

there are several monoids, we usually use ej; to emphasis that it is the identity
of M.

Example 1.1.3 (N, +) is a monoid with identity 0 and (N, -) is a monoid with
identity 1. The set 2Z of all even numbers is not a monoid with the multiplication
of numbers. It is only a semigroup.

Example 1.1.4 Let S be a semigroup and choose an element e ¢ S. Define
a binary operation on S := S U {e} as follows. If a,b € S, then ab is the product
of @ and b in S. Otherwise ae = ea = a for any a € S*. It is easy to check that
ST is a monoid with the identity e. In particular, for any given nonempty set A,
M(A) := 5(A)" is a monoid, where S(A) is the semigroup defined in Example 1.1.2.
The identity of M(A) is also called an empty word.

Definition 1.1.3  Let M be a monoid with identity e. An element a € M 1s
invertible in M if there is an element b € M such that ab = ba = e. A group is a
monoid such that every element is invertible.

We know that an invertible matrix has only one inverse matrix. Similarly, every
invertible element in a monoid has only one element b satisfying ab = ba = e. In
fact, if there are two elements b, ¢ such that ab = ba = ac = ca = e, then b = eb =
(ca)b = c(ab) = ce = c¢. This unique element b is called the inverse of a, denoted
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! is invertible and (a~!)"! =a

by a~!. For any invertible element a, its inverse a™
by Definition 1.1.3.

Let a be an element in a semigroup G. Define a! := a, a
for n > 1. Further, define ajas---a, = (a1---an—1)a, inductively for ai,---,

an € G. Let a° := e if a is in a monoid G. For any invertible a, define a=" := (a=1)"

2 .= aa,and a” := a" 'a

for any n > 1.

Example 1.1.5 (M, (P),-) with matrix product is a monoid and it is not a
group. Its identity is the identity matrix E,. (M, (P),+) with the matrix addition
is a group, whose identity is the zero matrix 0.

Let a= Grtiy/—l ey 1 € H. Define & := aby—1 —e—ay-1 ,

—c+dv—-1 a—by/—1

c—dv/—1 a+by-—1
and ||a|| := vVa?Z + b2 + ¢2 + d?2. Then ||a|| is called the norm of . Assume that
1
a#0. Let 3= W&. Then aff = fa = E> (2 x 2 identity matrix). Thus every
(8%

nonzero element in H is an invertible matrix.

Suppose G is a group with product -. Then the set GG is also a group with a
new product o, where aob = b-a for any a,b € G. The group G with the product
o is denoted by G°P, which is called the opposite group of the group G with
product “”.

Proposition 1.1.1  Let M be a monoid, and a,b € M. (i) Suppose a and
b are invertible. Then (ab)™! = b~la™! and a™" = (a™)~ " for any integer n > 1.
(ii) Let G = {a € M|a is invertible}. Then G is a group.

Proof (i) (ab)(b~ta™?!) = a(bb~1)a™! = aea™! = e. Similarly, (b~ 'a=1)(ab) =
e. Hence (ab)~! = b~'a~!. Let n be a nonnegative integer, and aa” = a"a for
a € M. Then aa"*! = a(a™a) = (aa")a = (a"a)a = a""'a. Thus aa" = a"a
for any nonnegative integer n by induction on n. Suppose a™ = (a™)~!. Then
a—(M+1) — (a—l)n-b»l = (aﬁl)"a*l - (an)—la—l = (aa")"l == (a"'a)_l = (an+1)—1_
So a=™ = (a™) ! for any positive integer n by induction.

(ii) Since e € G, G # @. Va,b € G, we have ab € G by (i), which means that the
product of M is a binary operation of G. It is obvious that this binary operation
is associative. Since every element of G is invertible, G is a group by Definition
1.1.3: O

Example 1.1.6 For any nonempty set X, Sym(X) := {f € X¥X|f is invertible,
equivalently, f is bijective} is a group by Proposition 1.1.1. This group is called
the symmetric group of X. In particular, if X = {1,2,--- ,n}, then Sym(X) is

iy dg e dp

i 3 ws m
denoted by S,,. For any o € S,,, o can be denoted by o = ( : n ) , where
the second line is the image of 1,2,--- ,n, under o, i.e., i; = o(j) for j =1,2,--- ,n.
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Since o is a bijective mapping, i1,49,* ,i, is a permutation of 1,2,--- ,n. Note
that different permutations of 1,2, -+ ,n in the second line of o determine different
mappings in S,,, and any permutation of 1,2, - -+ ,n in the second line of o determines

an element in S,,. The cardinal |S,| of S, is n!.

Let GL(n,P) := {A € M,(P)|A is invertible} is a group with multiplication
of matrices. GL(n,P) is called a general linear group over P. In particular,
GL(1,P) = P* := P\ {0} with multiplication of numbers is a group. Let H* :=
H\ {0}. Then H* with multiplication of matrices is a group.

Definition 1.1.4 A semigroup S is said to be commutative if its binary
operation is commutative, i.e., ab = ba for all a,b € S. A commutative monoid
is a commutative semigroup with identity. An abelian group is a group with a
commutative binary operation. A group G is finite (infinite) if the cardinal |G| of
G, 1is finite (infinite). |G| is also called the order of G.

The symmetric group S, is a noncommutative finite group if n > 3. The general
linear group GL(n,P) over a number field P is a noncommutative infinite group if
n > 2. (M,(P,n),+) is a commutative infinite group.

2kmy/—1
Example 1.1.7 For any fixed integer n > 1, G,, := {exp (—ﬂn—) |k € Z}

is a finite abelain group with product of numbers. The order |G,| of G, is equal
to n.

If G is an abelian group, then the product of G is usually denoted by “+7, i.e.,
ab := a + b. If the binary operation of an abelian group G is denoted by “+ 7, then
the identity of G is denoted by 0, a~! by —a, and a™ by na for any integer n. In
particular, 0a = 0. Further define the subtraction in G via a — b := a + (—b) for
a,b € G. Similar cases can be applied in commutative semigroups and monoids.

Example 1.1.8 Let A be a nonempty set, A~ := {a~!|la € A}. Suppose
B is a disjoint union of A and A~, and M (B) is the monoid defined in Example
1.1.4. If a € A, then a is also denoted by (a=!)~! in M(B) in the sequel. Suppose
a € B lies immediately to a~!. Then the word may be simplified by omitting the
pair a~la, equivalently, cancelling a—'a. A word that cannot be further simplified is
said to be reduced. We claim that every word in M (B) has a unique reduced word
by cancelling all pairs a~'a for a € B. We prove this claim by induction on the
length of a word, the number of letters in the word. If w € M (B) is reduced, there
is nothing to prove. If not, there must be some a € B lies immediately to a=!. If we
prove that we can obtain every reduced form of w by omitting a~!'a first, then the
claim will follow by induction because the word is shorter after this omitting. Let wq
be the reduced word of w. It is obtained from w by some sequence of cancellations.
The first case is that our pair a~la is cancelled at some step in this sequence. If so,
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we may as well omit a la first. So this case is settled. On the other hand, since
wp is reduced, the pair a—'a cannot remain in wy. At least one of a—! and a must
be cancelled at some time. If the pair a~'a itself is not omitted, the first omitting
involving the pair must look like ---a(a 'a)---, or --- (a~'a)a™'---. Notice that
the word obtained by this omitting (oFit the underline pairs)i—sthe same as the one
obtained by cancelling the pair a~'a. So at this stage we may omit the original pair
instead. Then we are back in the first case. Thus the claim is proved.

Let F(A) be the set of all reduced words in M(B). Define a binary operation
on F'(A) as in M(B) followed by reduction if necessary. Then this binary operation
is well-defined. Suppose w; € F(A) for i = 1,2,3. Then (wjws2)ws = w1 (wews) in
M(B). They have the same reduced word wg in F(A). So wi(wows) = (wywsz)ws
in F'(A). Hence F(A) is a monoid with identity the empty word. Since the inverse
en. where g; = 1 and a! = a;, is a;*" - --a;“%a; °', F(A) is a group.

€1
of a7’ -+ - afr,

Exercises

1. Let A, be the set of all ways of placing brackets (grammatically correctly) in the
product a;-az - - - an, i.e., the set of all expressions of the form (a1-az)((as-as) - -ax).

n—1
1 _ ’
Prove that [A,| = ;c;n_lz. (Hint: [Ap] =" |Ak|[An—kl.)
k=1

2. Given any sequence of elements {a1,az, -+ ,an} in a semigroup S. Prove that re-
peated application of the product of S produces the same result regardless how valid
pairs of parenthesis are inserted among aiaz - - a,.

3. Suppose a1, -+ ,a, are elements in a commutative semigroup. Show that a; - - a, =
Qg (1)0o(2) " Qo (n) for any o € S,.

4. Define aob=a+b—ab in Z. Show that (Z,0) is a commutative monoid.

5. Let M := Z % Z the set of all pairs of integers (z,y). Define (z1,z2)(y1,¥y2) = (ziy1+
2x9Y2, Z1Y2 + T2y1). Show that this defines a commutative monoid. Show that the
cancellation law holds for (z1,z2) # (0,0), that is, (z1,z2)(y1,y2) = (21, 72)(21, 22)
implies (y1,y2) = (21, 22)

6. Let G be a semigroup. Show that G is a group if and only if there is an element
e € G such that ea = a for any a € G, and there is an element b € G such that ba = e
for each a € G. Show that G may be not a group if ba = e is replaced by ab = e.

7. Suppose a,b are two elements in a group G' with identity e. Prove that b = a™! if
ab=e.

8. Let A, B be m x n and n X m matrices. Prove that E,, — AB is invertible if and
only if E,, — BA is invertible.

9. Suppose R/Q := {a + Q|a € R}, where a + Q := {a + z|z € Q} C R. Show that
(1) a+Q = b+ Q if and only if a — b € Q; (2) the addition (a + Q) + (b + Q) =
(a+b)+Qis well-defined in R/Q, that is, if a+Q = o' +Q, and b+ Q = b’ +Q, then
(a+b)+Q=(a’+b)+Q; (3) R/Q is an abelian group with the addition defined
in (2).



10.

11.

12,

13.

14.

15.

16.

17

18.
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Let a be an invertible element in a monoid G. Show that a™a™ = a™"™ (additive
notation: (m+n)a = ma+na) and (a™)™ = a™" (additive notation: (mn)a = m(na))
for any m,n € Z.

Suppose a,b are two elements in a group such that ab = ba, and n € Z. Show that
(ab)™ = a™b™. Does (ab)™ = a™b™ hold if ab # ba?

Prove that the following conditions on a group G are equivalent: (1) G is abelian;
(2) (ab)? = a®*b* for alla,b € G; (3) (ab) ' =a 'b ' foralla,b € G; (4) (ab)™ = a™b"
for three consecutive integer n and any a,b € G. Show that (4) = (1) is false if
“three” is replaced by “two”.

If G is a finite group with identity e of even order, then G contains an element a # e
such that a® = e.

Let H be a subset of a finite group G and |H| > |G|/2. Prove that each element of
G is a product of two elements in H.

1 2 3 45 123 45
2 = _ and 7 =
Compute o7, 0~ and 7~ o7, where o (2 31 5 4) dr (3 415 2) ’

Let 2% := {A|A C X} for a set X. Show that 2% is a group with multiplication
defined by AAB := (A\ B)U (B \ A) for A, B € 2%. Suppose |X| = n. Prove that
[2%| =27,

Let A = {t} be a set of one element. Describe S(A), M(A), and F(A) defined in
Examples 1.1.2, 1.1.4 and 1.1.8 respectively.

Suppose y? = z° +ax+b is an elliptic curve, where a and b are real numbers, and the
discriminant A = —16(4a®+27b%) # 0. Let G := {(z,y) € R*|y® = z* +az+b}U{E}.
For any two points P = (z1,41),Q = (x2,y2) in G, define R = P + @, where

2 2
_ - .
R:<(u> _xl_zz,u<2m+z2_(u> )_yl) if 21 £ 22;
T2 — I T2 — I To2 — I

322 +a\? 322 + 322 4 a2 .
R:(( 213/1 )_QI]’ 21y1a<3z1_ I2lyx a) —u | =220 =y #0;

and R = E if 71 = w2, y1 = —y2, Show that G is an abelian group with the identity
E. (Hint: if z; # z2, then R is the third point which is the intersection of the curve
with the line through P and Q.)

Subgroups

Recall that a nonempty subset U of a vector space V is a subspace if it is a vec-
tor space with the operations obtained from V by restriction. Similarly we call a
nonempty subset H of a group G is a subgroup if it is a group with the binary
operation followed from G by restriction. Explicitly, we have

Definition 1.2.1  Let H and Z be two subsets of a group G.

(a) If H # @ and a='b € H for any a,b € H, then H is called a subgroup of
G, denoted by H < G.
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(b) The intersection of all subgroups of G containing Z is denoted by (Z), which
is called a subgroup generated by Z. If Z = {a1,az2, -+ ,an}, then (Z) is simply
denoted by (a1, a2, - ,an).

(c) If Z is a subset of a group of G such that G = (Z), then Z is called a
generator set of G. A group G is said to be cyclic if G = (a) for some a € G.

(d) The order of (a) is also called the order of a, denoted by |a|.

(e) A group G is called a periodical group if |a| is finite for any a € G.

Let H be a subset of a group of G. Then H said to be closed under the inverse
(resp. the product) in G if a=! € H (resp. ab € H) for any a,b € H. A nonempty
subset H of a group G is a subgroup if and only if H is closed under the inverse
and the product of G. In fact, if H < G and a,b € H, then a™! = a " !(a"'a) € H
and ab = (a=')"'b € H for any a,b € H. Conversely, suppose H is closed under
the inverse and the product of G. Then a~'b € H for any a,b € H and H < G.
Similarly, we can prove that a subset H of a group G is closed under the inverse and
the product of G if and only if ab~! € H for any a,b € H. Thus a nonempty subset
H of a group G is a subgroup if and only if ab~! € H for any a,b € H.

By Definition 1.2.1, (@) = {e}. It is easy to prove that an intersection of sub-
groups is a subgroup. Thus (Z) is a subgroup of G for any subset Z of G.

Every group G has subgroups G and {e}. They are called trivial subgroups.
A nontrivial subgroup is said to be proper.

Example 1.2.1 Let Q/Z := {a+Z|a € Q}, and Z(p*™) := {7% +Zla €Z,n¢€

N}, where p is a fixed prime number. Then Z(p>°) and Q/Z are proper subgroups

of R/Z. Moreover Z(p>) and Q/Z are periodical, but R/Z is not periodical by
Corollary 1.2.1 below.

Example 1.2.2 Let SL(n,P) := {A € GL(n,P)|det(A) = 1}, where det(A)
is the determinant of the matrix A. Then SL(n,P) is a subgroup of GL(n,P).
SL(n,P) is called a special linear group over P. Let B(n,P) be the set of all
upper triangular matrices in GL(n,P). Then B(n,P) is a subgroup of GL(n,P),
which is called a Borel subgroup of GL(n,P). W := {A € GL(n,P)| every column
and every row of A have only one nonzero number 1} is a subgroup of GL(n,P) (see
Example 1.5.1), which is called a Weyl subgroup of GL(n,P).

Ligt g = (1:(7),; _(qu). Then O(p + ¢,P) := {A € GL(p + ¢,P)| AT, ,A —
Jp.q} is a subgroup of GL(n,P), where AT is the transpose of A. The group O(p +
q,P) is called the orthogonal group over P. The group SO(p + ¢,P) := O(p +
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P) N SL(p + ¢, P) is called the special orthogonal group over P. SO(p + 0,P)
and O(p + 0, P) are simply denoted by SO(p,P) and O(p,P) respectively.

Let A = (a;;) be a matrix with entries in the complex number field C. Then
(@i;), where @ is the conjugate complex number of a. Let U(n) := {A €
n,C)|ATA = E}. Then U(n) < GL(n,C). U(n) is called a unitary group.
) :=SL(n,C)NU(n) is called a special unitary group.

0 FE
—E 0
subgroup of GL(2n,P), which is called a symplectic group.

A -
(
U(n

Let J = ( ) Then Sp(2n,P) := {A € GL(2n,P)|ATJA = J} is a

Remark 1.2.1  If P is either R or C, then all groups G defined in Ezample
1.2.2 are subspaces of Euclidean spaces. In addition, the product map G x G — G,
(A, B) — AB and inverse map G — G, A — A~! are analytical. A group with an
analytical product map and an analytical inverse map is called a Lie group. All
groups defined in Example 1.2.2 are Lie groups when P is either R or C.

Theorem 1.2.1  Let Z be a nonempty subset of a group G. Then

= {Im g2 . ztr

z;, € Z,e;,=*x1l,n€ N} .

Note that it is possible that x; = x; for some i # j. In particular, if G is an abelian

group and its binary operation is denoted by “+7, then

(Z) = { ¥ mmy

i=1

n;, € L,x; € Z,m € N}.

Proof  Let X := {z7'a3*---2» | i € Z,; = +1,n € N}. It is obvious
that Z C X. Vz = 3:5‘1:;2- -zir € X and Yy = yilys?---ySn € X, we have

zly =g om0 Ctyttys? - yar € X, So X < G. Conversely, suppose H
is a subgroup of G contalmng Z. For any ¢ = z{'z5? ---25» € X, since H < G and
z;€ ZCH,z;" ¢ H. Sozx € Hand X C H. Thus (Z) = X. O

Remark 1.2.2 Let A; < G(i € I), where G is an abelian group with a binary

n
operation “+”. Then <U Ai> = {Z a;, |a;i, € A;,n€E N} by Theorem 1.2.1. In
el k=1

this case <U Ai> is denoted by ZAi.
el iel
For example, GL(n,P) = (Z), where Z is the set of all n x n elementary matrices
over the number field P. Thus Z is a generator set of GL(n,P). A mirror reflection
¥y determined by the unit vector n € R™ is the mapping: v,(a) = a—2(a, n)n for all
a € R™. Let X be the set of matrices of all mirror reflections under a fixed normal
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orthogonal basis. Since O(n,R) = (X), X is a generator set of O(n,RR). For any
nonempty set A, F((A) defined in Example 1.1.8 is a group with a generator set A.

In the remainder of this chapter, we always use m|n to indicate that m divides
n for m,n € Z.

Corollary 1.2.1 Let a be an element of a group G. Then (a) = {a™ | n € Z}.
Moreover, |a| =t if and only if a* = e and t|N for any integer N satisfying aV =e.

Proof (a) = {a™ | n € Z} follows from Theorem 1.2.1 directly. Let ¢ be the
minimal positive integer such that a! = e. Vn € Z, there are elements m,r € Z,
such that n = mt +r, where 0 < r < t. Then a" = a™*" = (a')™a” = a”. So
(a) = {e,a,---,at"1}. If there are integers s,l satisfying 0 < s < [ < t — 1 such
that a® = a!, then a'~* = al(a®)~! = e. Since 0 < [ — s < t — 1, this contradicts the
assumption about t. So |(a)| = t.

Conversely, assume that |(a)| = ¢. Since (a) is finite, there are positive integers
k < s such that a* = a®. Then a*~* = a®(a*)~! = e. Thus, there is a least positive
integer | such that a' = e. Then [ = |{e,a,a?, -+ ,a'"'}| = |(a)| = t. Now suppose
there is an integer N such that aV = e and N = gt +r for 0 < r < t. Then
e =a" = (a")%a” = a”. So r = 0 by the choice of ¢, that is, t|N. O

Theorem 1.2.2  Suppose |{a)| = n and d|n. Then {(a) has a unique subgroup
with order d, which is generated by ai .
n
d
integer such that (a™)* = a™' = e. Hence t|d as (a™)¢ = e. Since |(a)| = md,
md|mt, i.e., d|t. Thus d = t. Next, let H be an arbitrary subgroup of order d and let
s be the least positive integer such that a® € H. Suppose a* € H, where k = gs +r
for some 0 < r < s. Then a" = a*((a®)?)™" € H. Sor = 0. Thus H = (a®).
Since |H| = d, (a®)? = a®! = a% = e. Then dm|sd, i.e., m|s. From this, we have
a® € (a™) and H = (a®) C (a™). Thus H = (a*) = (a™) since |H| = |(a™)| =d. O

Proof  Suppose d|n and m = —. If [(a™)| = ¢, then ¢ is the minimal positive

Example 1.2.3 Let o € S, satisfying o(i;) = ;44 for j = 1,2,--- [k — 1,
o(ix) = 11, and o(m) = m for any other integers m. Then this o, denoted by
(41,72, ,ix), is called a k-cycle of S,. It is obvious that k is the least positive
integer such that o* (1) = [ for any 1 <1 < n. Hence || = k and (o) is a cyclic group
with order k. The 2-cycle is called a transposition. For the sake of convenience,
the identity mapping id is denoted by 1-cycle (i) for any 1 < i < n. The 1-cycle is
called a trivial cycle. A nontrivial cycle is a k-cycle for k > 2.

Definition 1.2.2  Two nontrivial cycles (iy,--- ,ix) and (j1,--- ,js) are dis-
jOint zf{zlv ) 2k}m {j11 R} JS} = 4.

Theorem 1.2.3  Suppose o = (1,12, -+ ,ix) 18 a k-cycle of S,., and T € S,,.
Then (1) o=t = (7(i1),7(i2), -~ ,7(ix)). In particular, ToT=' is also a k-cycle

of Sy.
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(2) Let p = (j1,j2,- " ,Js)- If p is disjoint to o, then po = op.
(3) S, = (01,02, ,0n—1), where o; = (i,i+1). Moreover, a? =id, ovoy = o0y
Zf |2 - _]| > 2, and 0i0i110; = 0410041 = ('L,L -+ 2).

Proof (1) Observe that To7~ ! = (7(i1),7(é2),- - , T(ix)) if and only if 7o =
(r(i1), 7(i2), -+ , T(ig))7. If m = ij, then To(m) = 70(i;) = 7(ij41) = (7(i1),
1(ig), -+, T(ix))T(m) for j = 1,2,--- ,k—1, and 7o (ix) = 7(i1) = (7(i1),7(i2), -,
7(ix)) (k). If m # i; for any j = 1,2,--- ,k, then 7(m) # 7(i;), and 7o(m) =
7(m) = (7(i1), 7(é2),- - , T(ix))7(m). Thus, (1) follows.

(2) If m = is, then op(m) = o(is) = po(m). Similarly we have op(m) = p(js) =
po(m) if m = js. For any other m, we have op(m) = m = po(m). So (2) holds.

(3) It suffices to prove S, = {(o;|i = 1,2,--- ,n — 1) since the rest follows from
(1). Forn = 2, (1) = 0?. For any o € S,, if 6(n) = n, then 0 € S,_; is a
product of some elements o;(i = 1,---,n — 2) by the inductive assumption. If

o(n) # n, then there is an integer k such that o(k) = n. Thus 7 = o o (k,n) satis-
fying 7(n) = n. So oo (k,n) =7 = 04,04, -~ 0;, and o = 0,04, - - - 04, (k, n). Since

On—2- Okt10k(k,N)OkOk11 - On2 = On_1, we have (k,n) = 0kOk41--On—2
Opn—10n—10n—2 - 0k+10k. This completes the proof. d
Exercises

1. Show that an infinite group is cyclic if and only if each of its proper subgroups is an
infinite cyclic group. Try to determine all subgroups of (Z,+).

2. Let G be an abelian group generated by a,- - -a,. Suppose |a;| < oo for all . Prove
that G is finite.

3. Suppose ai,-:+ ,a, € Q. Show that (a1, ,a,) is a cyclic subgroup of the additive
group (Q, +).

4. Let G be a group. For any elements a,b € GG, prove that the order of ab and that of
ba are equal.

5. Let G be a cyclic group of order 12. How many elements a in G such that G = (a)?

6. Suppose H, K are two subgroups of G and HK = {abla € H,b € K}. Show that
HK is a subgroup of GG if and only if HK = KH.

7. Show that S, is generated by (12), (13),--- , (1n).

8. Let G be a group generated by ai,---,a,. Show that G is abelian if and only if
aia; =aja; forall 1 <i<j<n.

9. Let A= ( _01 (1) ) and B = ( \/(1—1 \/(? ) Suppose Qs is the group (under
matrix multiplication) generated by A and B. Usually, the indentity matrix E,
A, B and AB in Qg are denoted by 1, i, j, and k respectively. Show that Qs =
{£1, i, £, £k}. Qs is called the quaternion group.

10. Let A = ( _01 (1) ) and B = ( (1) (l) ) and D} be the group (under matrix
multiplication) generated by A and B. Show that D} is a noncommutative group of
order 8. Dj is called the group of symmetries of a square.



