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PREFACE

In this booklet are collected a number of open problems in the
classical theory of functions of one complex variable. They
have come from a variety of sources. Some are famous prob-
lems which have been outstanding for many years, such as
Bieberbach’s conjecture on the coefficients of schlicht functions
(problem 6.1). Others arise out of recent work which has not
yet, or only just, been published. Most of them are concerned
in some way or other with size, either the order of magnitude
of a function or the precise bounds for certain constants. They
have been contributed to the author by many friends and in
many places, but in particular at the Conference on classical
function theory held at Imperial College in September 1964 and
so generously supported by N.A.T.O. It is hoped that this
collection will serve as a somewhat unorthodox record of that
conference and will encourage the researches of the specialist,
and inform the nonspecialist of some current trends in an old
but lively field of study. I gratefully acknowledge my debt to
previous collections of problems and particularly to Erdos [2]
and Littlewood [5].

The author of a problem is frequently elusive and I hope I
shall be forgiven in the many cases, where no authorship has
been attributed. Sometimes references give a good indication
and in some cases when I could be sure, I placed the author’s
name below the prcblem. May I conclude by thanking all my
friends and colleagues who so generously contributed their
ideas which have collectively enabled me to write this booklet,
the Athlone press, who have been most helpful at every stage,
N.A.T.O. for their encouragement and support and Miss Vivien
Glover for turning my scribbles into a beautiful typescript.

W. K. H.
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CHAPTER 1

MEROMORPHIC FUNCTIONS AND
NEVANLINNA THEORY

We use the usual notation of Nevanlinna theory.! If f(z) is
meromorphic in [z] < R,-and 0 < r < R we write

n(r, a) = n(r, a, f)

for the number of roots of the equation f(z) =a in |z| < 7,
when multiple roots are counted according to multiplicity and
7(r, a) when multiple roots are counted only once. We also'
define

N(r,a) =f [n(t, a)—tn(O, a)] dt—{—n(O, a)log r,
0

N(r, a) :f [A(e, a)—tﬁ(O, a)] dt%ﬁ(O, a) logr,
0

27

nirf) = mir, 0,) = = [1og* 1] a8
™
0
where logtz = max(log z, 0),

m(r) asf) = m(r; @, ’—L), a # .
f—a
and
T{r,f) = m(r, o0, f)+N(r, oo, f).
Then for every finite @ we have by the first fundamental
theorem?

T(r,f) = m(r,a, f{+N(r,a,f)+0(1), as r—>R. (L1)
We further define the deficiency |

8, f) = lim ™naf) _ ) qpN¥ef)
@ ﬁ{:.lji’ T(r,f) r—r T(r,f)

1 For an account see e,g. Nevanlinna [1,3] or Hayman [10] which will be de-
noted by M.F. in the sequel.
*M.F,p.5



MEBOMOBPHIO FUNCTIONS

‘the Valiron deficiency

A m(r, a, f) ,

(a.f) = HR 6. f)
and further :
)V(r N(r,a,f)
, @ a, ) =1- .

@1 f-oR T(r, f)
We then have the second fundamental theorem!?

Zé(a,f)<z®(af )< 2, (1.2).

provided that éither R = ooandf(z)isnot constant or R < + oo
and

H'E T(f',f)
+-rlog{l/(R—r)}

. If R = 400 we also cafine the order 4 and lower order u

=+m

F_hmlog (rj) }.=li_mlOgT(r’f).
SR logr, . =R logr

If d(a, f) > 0 the value a is called deficient. It follows from
(1.2) that there are at most countably many deficient values if
the conditions for (1.2) are satisfied. .

1.1. Is (1.2) all that is true in general? In other words can we
construct a meromorphic function f(z) such that f(z) has an
arbitrary sequence a, of deficient values and no others and
further that é(a,, f) = d,, where 4, is an arbitrary sequence sub-
ject to Zé, < 2? (If f(z) is an integral function é( o, /) = 1, so
that Y d(a, f) < 1. For a solution of the problem in this case

aF o

see M.F. p. 80.)

1.2. How big can the set of Valiron 'deﬁclencxes be for functions
in the plane? It is known that

N(r, a) = T(r, f) + O{T(r, {)**} 13

“as r — oo, for all @ outside a set of inner capacity zero.? In
case R < -+ oo this is more or less best possible but in the plane

'M.F, p. 43
% Nevanlinna (3], pp. 260-4.



MEROMORPHIC FUNCTIONS

" we only know from an example of Valjron [1] that the corre-
sponding set of a can be non-countably*infinite. It is also not
known whether (1.3) can be sharpened.’

1.3. If f(2) is meromorphic of finite order 4 and Y d(a, f) = 2,
it is conjectured that A = n/2, where n is an integer and » > 2
and all the deficiences are rational. F. Nevanlinna [1] has
proved this result on condition that f(z) has no multiple values
so that n(r, @) = 7i(r, a) for every a (see also R. Nevanlinna[2]).

1.4. Let f(2) be an integral function of finite order 4, and let
‘ny(r, @) denote the number of simple zeros of the equation
f(z) =a. If

m(r,0) =0, mrb)=0() 8 r—-w,

where @ 7% b, ¢ < 4, is it true that 4 is an integral multiple of }.
More strongly is this result true if @(a) = } = ©(b)? (Fora
somewhat weaker result in this direction see Gol’dberg and

Tairova [1].) v '

1.5. Under what conditions can }$(a, f) be nearly 2 for an
integral function’ of finite order A? Pfluger [1] proved that if
Yé(a, f) = 2, then! 4 is a positive integer ¢, x = 1 and all the
deficiencies are integral multiples of 1/g. If further

2 8(a, f) > 2—e(p),

- where &(u) depends on u, then Edrei and Fuchs [1,2] proved
that these results remain true ‘nearly’ in the sense that there
exist ‘large’ deficiencies which are nearly positive integral mul-
tiples of 1/g and whose sum of deficiencies is ‘nearly’ 2. Can
there be a finite or infinite number of small deficiencies as well
in this case?

1.6. N. U. Arakelyan has just proved, (unpublished) that,
given u > % and a countable set ¥, there exists an integral
function f{z) of order u, for which all the points of E are
deficient. Can E be the precise set of deficiencies of f in the
sense that f has no other deficient values? It is also con-
jectured that if @, are deficient values for an integral function

1 M.F., p. 115.
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of finite order then

2{log[1/d(a,, /)]}* < +co.
(N. U. Arakelyan)

1.7. If f(z) is. an integral function of finite order A W}nch
is not an integer it is known that!

> (a.f) < 2—K(4)

where K(1) is a positive quantity depending on A. What is the
best possible value for K(4)? It is conjectured? that if ¢ is
the integral part of 4, and if ¢ > 1, then

|sin(mr2)|
KA)=——"-, A<q+i,
( gtisin(ma) 1SS! ¢
K=" ca<atL
g+1
This result would be sharp.

If A < }; there are no deficient values, so that K(1) = 1. If
3 < 2 < 1it is known that K(4) = sin n4.

1.8. More generally if f(z) is meromorphic in the plane of order

A and K(A) is defined as in 1.7 it is conjectured! that for a # b
im N(r, ~a)—{—N(r, b)
R T(f,f)

This is known to be true for 0 < 4 < 1. If equality holds in the

above inequality it is conjectured that f(z) has regular growth,
Cle. A= p.

> K(2).

1.9. If f(2) is an integral function of finite order A, which has a
finite deficient value find the best possible lower bound for the
lower order u of f(z). (Edrei and Fuchs [1] showed that 4 > 0.)

It is also known that for every 4 > 1, u < 1 is possible
(A. A. Gol’dberg [1]).

1 Pfluger [1], M.F., p. 104.
* M.F., p. 104, Edrei and Fuchs [1].
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1.10. If! f(z) is a meromorphic function of finite order with more
than two deficient values is it true that if ¢ > 1, then

T(o’r)

r—w T(T)

L.11. If! f(z) is an integral function with at least one finite
deficient value does the conclusion of (1.10) hold?

< 4+

1.12. If f(z) is an integral function of infinite order with real
zeros? is 6(0, f) > 0? More generally is 6(0, f) = 1%

1.13. If f(z) is an integral function of finite order A and lower
order u, with real zeros ﬁn&i the best possible bound B = B(l p)
such that

6(0,f) > B.

It is known? that B > 0 if 1 < 4 < o, and it is conjectured
that B — 1 as A — +oo0.

1.14. If f(z) is meromorphic of finite order then it is known
(M.F., pp. 90, 98) that

2o )"

converges if « > } but may diverge for every « < 3. What
happens when « = %?

L.15. If f(z) is meromorphlc in the plane and of lower order u
and if § = d(a, f) > 0, is it true that, for a sequence

r=r,— o0,

f(2) is close to a on a part of the circle [z] = r, having angular

measure at least
—sm J( )-i—o(l)?

(For a result in this direction see Edrei [1].)
1.16. For any function f'(z) meromorphic in the plan> let

\

n(r) = sup n(r, a)

z These problems are suggested by certain conclusions in Edrei and Fuchs[1,2].
2 Edrei, Fuchs and Hellerstein [1]. <

5



MEROMORPHIC FUNCTIONS

be the maximum number of roots of the equation f(z) = a in

.]z[ < r, and
ff 1f'(2)]? ﬂ n(r, a) |daf*
e z)lz}2 (14-|al?)?

Then 7A(r) is the area with due count of multiplicity of the
image of the circle [z| < r by f(z) onto the Riemann-sphere and
A(r) is the average value of n(r, ) as @ moves over the Riemann-
sphere. It is known that (M.F., p. 14)

n{r)

lglim——=ce.
< A(’)<e

r—*o0

Can e be repla,ced by any smaller quantity and in particular by
12

1.17. For any integral function f(z) of finite order 1 in the plane

- we have

1 < lim 08 H(.S)
e T(nf)

where C(A) depends on A.only.! It is known? that the best
possible value of C(4) is wA/sin (74) for 0 < A < %, and it is
conjectured that C(4) = =4 is the corresponding result for
A>3

C(A),

1

1.18. Suppose that f(z) is meromorphic in the plane and that
f(z) and f®(z) have no zeros for some !> 2. Prove that
f(z) = e***® or (Az+B)™.

[The result is known if f(z) has only a finite number of poles,
(Clunie [3], M.F., p. 67) or if f(z) has finite order and f # 0,
S #0,f" # 0, and

lim 280 S) o
5w logr

r—w

(Hayman [8]) or if none of the derivatives of f(z) have any zeros
and f(z) has unrestricted growth. (Pélya [1], M.F., p. 63.)]

! This follows very simply from M.F., Theorem 1.6, p. 18.
* Wahlund [1].

6



~ MEROMORPHIC FUNCTIONS
1:19. Suppose that f(z) is meromorphic in the plane and

J'@f@)" #1,  where = > L.

Prove that f(z) is constant. This is known to be true forn > 3.
(Hayman [8].)

1.20. If f(z) is non-oonstant and meromorphlc in the plane and
n = 3 or 4 prove that ¢(z) = f'(z) —f(z)" assumes all finite com-
plex values. .This is known to be true if f(z) is an integral
function or if » > & if f(2) i8 meromorphic. (ibid.) |

In this connection it would be most interesting to have gen-
eral conditions under which a polynomial in f(z) and its deriva-
tives can fail to take some complex value. Especially when
f(z) is meromorphic rather than an integral function rather little
is known (see however Clunie [3,4] and M.F., ch. 3).

1.21. If F(z) is non-constant in the plane it is known (M.F.,
pp. 55-6) that
__T(r,f) " {5 if f(z) is meromorphic;

TN D

These inequalities are sharp. It is not known whether

T r,
B, = (. f)
f'.u) f B
can be greater than one or even mﬁmte It is known that f,
is finite if f(z) has finite order. Examples show that «, may be
infinite for mtegral functions of any order g, ie: 0 < i < o0,

and that given any positive constants K, u there exists an
integral function of order at most u such that

T, f)
(r.f")

on a set of r having positive lower logarithmic density. (For
this and related results see Hayman [11].)

1, if f(z) is an integral function.

1.22. The second fundamental Theorem is a consequence of the
inequality (M.F., formula (2.9), p. 43)

k
2N(r,a, f) > [g—2+o()IT(r.f) (1.4)

ve=1

7



MEROMORPHIC FUNCTIONS

which holds for any ¢ > 3 distinct numbers a,, as r — o out-
side a set & of finite measure, if f(z) is meromorphic in the plane.
The exceptional set £ is known to be unnecessary if f(z) has
finite order. Does (1.4) also hold 'as »r — oo without restriction
if f(z) has infinite order?

1.23. Under what circumstances does f(z,+2z) have the same
deficiencies as f(z)? It was shown by Dugué [1] that this need
not be the case for meromorphic functions and by Hayman [4]
that it is not necessarily true for integral functions of infinite
order. The case of functions of finite order remains open.
Valiron [2] notes that a sufficient condition is that

Tr+1.f) |
T(r,f)

and this is the case in particular if A—u < 1, where 4 is the
order and u the lower order. Since for integral functions of
order 1 < % there are no deficiencies anyway it follows that the
result is true at any rate for integral functions of order 4 <
and, since x4 > 0 always, for meromorphic functions of order
less than one.

. as r— o0,



CHAPTER 2

INTEGRAL FUNCTIONS

Asymptotic values and paths

Let f(2) be an integral function. We say that a is an asymptotic
value of f(z), if

, f@)—~a,

as z — oo along a path T, called a corresponding asymptotic
path. Some of the most interesting open problems concerning
integral functions centre on these asymptotic values and paths.
It follows from a famous result of Ahlfors [1] that an
integral function of finite order %k can have at most 2k
distinet finite asymptotic values. On the other hand, by
a theorem of Iversen [1] w is an asymptctic value of &very
integral function. Some of the following problems are concerned
. with generalizations arising out of the above two theorems.
Throughout this section '

M(r) = M(r,f) = A I/ ()]

denotes the maximum modulus of f(z).

" 2.1 Suppose that f(z) is an integral function of finite order.
What can we say about the set E of values w such that

(i) ulr, f—w) = min |f(z)—w| — 0, as r— 00;
or ) R Z|=71

27
iy mfr, 1) = L [rog+ __1__, - oot
(ii) m(r,f_w) 271'flog - df — co?

0 .

Clearly (ii) implies (i). By the result of Arakelyan quoted for
problem 1.6 the set of deficient values, which is clearly
contained in K, can include any countable set. Can E be
non-countably infinite in case (i) or contain interior. points
in case (i)? ' o

§ 9
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2.2. Produce a general method for constructing an integral
function of finite order and in fact minimal growth which tends
to different asymptotic values w,, w,... w, as z — oo along
preassigned asymptotic paths (), C, ... C;. (Known methods
Kennedy [1], Al-Katifi [1], only seem to work if the w, are all
-equal, unless the O, are straight lines.)

2.3. If ¢(z) is an integral function growing sloWly compared
with the function f(z), we can consider ¢(z) to be an asymptotic
- function of f(z) if f(z) —¢(z) — 0 as z — oo along a path I'. Is
it true that an integral function of order k can have almost 2 k
distinct asymptotic functions of order less than }? (If

f=#1(2) >0,  f—y(2) >0
along the same path I' and ¢,(z), ¢,(2) have order less than }
then by Wiman’s theorem ¢,(z) = ¢,(2).) A positive result in
this direction is due to Denjoy [1], but only when the paths are
straight lines. The result when the ¢ (z) are polynomials is true
(and a trivial consequence of Ahlfors’ theorem for asymptotic
values).

2.4. Suppose that f(2) is a meromorphic function in the plane,
and that for some number 6, 0 < 6 < 2w, the function f(z)
assumes infinitely often every value with at most two exceptions
in every angle 0 —¢ < argz < 0+¢, when ¢ > 0. Then the ray
arg z = 0 is called a ‘Julia line’. It is known?! that if f(z) is an
integral function or if f(z) is meromorphic and

I(r.f)

rom (log r)2

’

(but not necessarily otherwise,) at least one direction of Julia
exists. What can we say about the exceptional values at dif-
ferent Julia lines? In particular can an integral function f(2)
. have one exceptional (ﬁmte) value a at ong Julia line I'; and a
" different exceptional value b at a different Julia line I', ?
: (C. Renyi)

2.5. What can we say about the set E of values a which an in-
tegral function f(z) assumes infinitely often in every angle?

1 8ee Lehto [1].
10



