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PREFACE

Besides the general acknowledgement mentioned in the Intro-
duction, I would also express my more specific thanks to
Mr A.P. Rollett and Dr G. Matthews who gave me very valuable
help and criticism at the manuscript stage. Mr W. G. Kellaway,
of the Department of Education in the University of Cambridge,
read the proofs and made a number of important suggestions.

This manuscript set the printers a difficult task, and I am most
grateful to them for the skill and cheerfulness with which they
have overcome it.

E. A. M.
March, 1964

It is probably true that this would have been a different book
if written in 1969—1I have learned much as the years pass, even
though they have been comparatively few. But I doubt whether
the basic plan would have changed greatly. This still seems to
me to be a reasonable way to present the subject to the still
immature, but developing, young mathematician.

I 'am grateful for many comments and much advice. To adopt
all would have gone beyond second printing to second edition,
but I have incorporated improvements where readily possible.
There were also more mis-prints (or, to give them their proper
names, mistakes) than I like in the first printing and I acknow-
ledge help from a number of friends, especially the late Mr.
C. V. Durell and, in kindly but persistent detail, Mr. F.
Gerrish.

E. A. M.
February, 1969



INTRODUCTION

Since the peaceful days of 1958-9 when I wrote the first volume of this
work, an explosion of considerable violence has struck the world of
teachers of mathematics. ‘In 1959, the Organisation for European
Economic Cooperation convoked at Royaumont, near Paris, France, a
two-week seminar on “New Thinking in School Mathematics”.” This
quotation, from the later O.E.E.C. book, Synopses for Modern Secondary
School Mathematics, describes the force that gathered in preparation for
the explosion. Much preliminary work had been done before 1959, but
it is fair to ascribe to that gathering and to its chairman, Professor
Marshall Stone of the University of Chicago, high credit for the more
directed activity that has since taken place.

For my own part, I had the privilege of being present for some of the
time, and of speaking and discussing the problems informally. It
became clear to me that something vital was involved, though I did not
feel able to go as far as many of the protagonists would wish. Whether
or not I have judged correctly here, the reader must decide.

It is not possible, I think, to write at this stage a fully satisfactory book
on ‘modern algebra’ for class-room use; there just is not sufficient
teaching experience of the problems involved. I have tried to look with
the eye of imagination at a beginner approaching the subject, and to
judge how he can best be served as he tries, on the one hand, to see what
it is all about and, on the other (should he be proceeding to further study)
to prepare himself for a firm grasp of the details that will come later.

I have had in mind a pupil in the top forms at school or in the first year
of a university course. In writing, I have done all I can to make myself
clear, but I have not attempted to pretend that the subject is easy. It is
exciting and illuminating, and very rewarding, but it is not easy, and the
pupil who wishes to master it will have to make the effort.

The choice of subject-matter has been extremely difficult; many altern-
atives are possible both in content and in presentation. Every reader
familiar with the subject as a whole will regret some omission or other.
A conspicuous omission, for example, is any reference to mathematical
logic. Notation, too, has proved troublesome, for many alternatives are
in existence. I can only hope that the particular choices made will not
prove unduly troublesome in later reading; my consolation is that other
variants would probably have proved no less unpopular.



INTRODUCTION Xiii

It would be hard to express my indebtedness for the material used. I
have given a fairly detailed bibliography and take this opportunity of
recording how much I owe to all these authors. The list is far from
exhaustive, but it does indicate possible next steps for reading in a
subject which I hope this book may do something to encourage.
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