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Feynman’s Preface

These are the lectures in physics that I gave last year and the year before to the
freshman and sophomore classes at Caltech. The lectures are, of course, not
verbatim—they have been edited, sometimes extensively and sometimes less so.
The lectures -form only part of the complete course. The whole group of 180
students gathered in a big lecture room twice a week to hear these lectures and
then they broke up into small groups of 15 to 20 students in recitation sections
under the guidance of a teaching assistant. In addition, there was a laboratory
session once a week.

The special problem we tried to get at with these lectures was to maintain the
interest of the very enthusiastic and rather smart students coming out of the high
schools and into Caltech. They have heard a lot about how interesting and excit-
ing physics is—the theory of relativity, quantum mechanics, and other modern
ideas. By the end of two years of our previous course, many would be very dis-
couraged because there were really very few grand, new, modern ideas presented
to them. They were made to study inclined planes, electrostatics, and so forth,
and after two years it was quite stultifying. The problem was whether or not we
could make a course which would save the more advanced and excited student by
maintaining his enthusiasm.

The lectures here are not in any way meant to be a survey course, but are very
serious. I thought to address them to the most intelligent in the class and to make
sure, if possible, that even the most intelligent student was unable to completely
encompass everything that was in the lectures—by putting in suggestions of appli-
cations of the ideas and concepts in various directions outside the main line of
attack. For this reason, though, I tried very hard to make all the statements as
accurate as possible, to point out in every case where the eqiations and ideas fitted
into the body of physics, and how—when they learned more—things would be
modified. I also felt that for such students it is important to indicate what it is
that they should—if they are sufficiently clever—be able to understand by deduc-
tion from what has been said before, and what is being put in as something new.
When new ideas came in, I would try either to deduce them if they were deducible,
or to explain that it was a new idea which hadn’t any basis in terms of things they
had already learned and which was not supposed to be provable—but was just
added in.

At the start of these lectures, I assumed that the students knew something when
they came out of high school—such things as geometrical optics, simple chemistry
ideas, and so on. I also didn’t see that there was any reason to make the lectures
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in a definite order, in the sense that I would not be allowed to mention something
until I was ready to discuss it in detail. There was a great deal of mention of things
to come, without complete discussions. These more complete discussions would
come later when the preparation became more advanced. Examples are the dis-
cussions of inductance, and of energy levels, which are at first brought in in a
very qualitative way and are later developed more completely.

At the same time that I was aiming at the more active student, I also wanted
to take care of the fellow for whom the extra fireworks and side applications are
merely disquieting and who cannot be expected to learn most of the material in
the lecture at all. For such students I wanted there to be at least a central core or
backbone of material which he could get. Even if he didn’t understand everything
in a lecture, I hoped he wouldn’t get nervous. I didn’t expect him to understand
everything, but only the central and most direct features. It takes, of course, a
certain intelligence on his part to see which are the central theorems and central
ideas, and which are the more advanced side issues and applications which he may
understand only in later years.

In giving these lectures there was one serious difficulty: in the way the course
was given, there wasn’t any feedback from the students to the lecturer to indicate
how well the lectures were going over. This is indeed a very serious difficulty,
and I don’t know how good the lectures really are. The whole thing was essentiaily
an experiment. And if I did it again I wouldn’t do it the same way—I hope 1
don’t have to do it again! I think, though, that things worked out—so far as the
physics is concerned—quite satisfactorily in the first year.

In the second year I was not so satisfied. In the first part of the course, dealing
with electricity and magnetism, I couldn’t think of any really unique or different
way of doing it—of any way that would be particularly more exciting than the
usual way of presenting it. So I don’t think I did very much in the lectures on
electricity and magnetism. At the end of the second year I had originally intended
to go on, after the electricity and magnetism, by giving some more lectures on the
properties of materials, but mainly to take up things like fundamental modes,
solutions of the diffusion equation, vibrating systems, orthogonal functions, . . .
developing the first stages of what are usually called “the mathematical methods of
physics.” In retrospect, I think that if I were doing it again I would go back to
that original idea. But since it was not planned that I would be giving these lec-
tures again, it was suggested that it might be a good idea to try te give an introduc-
tion to the quantum mechanics—what you will find in Volume III.

It is perfectly clear that students who will major in physics can wait until their
third year for quantum mechanics. On the other hand, the argument was made
that many of the students in our course study physics as a background for their
primary interest in other fields. And the usual way of dealing with quantum
mechanics makes that subject almost unavailable for the great majority of students
because they have to take so long to learn it. Yet, in its real applications—espe-
cially in its more complex applications, such as in electrical engineering and chem-
istry—the full machinery. of the’ differential equation approach is not actually
used. So I tried to describe the principles of quantum mechanics in a way which
wouldn’t require that one first know the mathematics of partial differential equa-
tions. Even for a physicist I think that is an interesting thing to try to do—to
present quantum mechanics in this reverse fashion—for several reasons which
may be apparent in the lectures themselves. However, I think that the experiment
in the quantum mechanics part was hot completely successful—in large part
because I really did not have enoug’h time at the end (I should, for instance, have
had three or four more lectures it order to deal more completely with such matters
as energy bands and the spatial dependence of amplitudes). Also, I had never
presented the subject this way before, so the lack of feedback was particularly
serious. I now believe the quantum mechanics should be given at a later time.
Maybe I'll have a chance to do it again someday. Then I'll do it right.

The reason there are no lectures on how to solve problems is because there were
recitation sections. Although I did put in three lectures in the first year on how to
solve problems, they are not included here. Also there was a lecture on inertial
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guidance which certainly belongs after the lecture on rotating systems, but which
was, unfortunately, omitted. The fifth and sixth lectures are actually due to
Matthew Sands, as I was out of town.

The question, of course, is how well this experiment has succeeded. My own
point of view—which, however, does not seem to be shared by most of the people
who worked with the students—is pessimistic. I don’t think I did very well by the
students. When I look at the way the majority of the students handled the problems
on the examinations, I think that the system is a failure. Of course, my friends
point out to me that there were one or two dozen students who—very surprisingly
—understood almost everything in all of the lectures, and who were quite active
in working with the material and worrying about the many points in an excited
and interested way. These people have now, I believe, a first-rate background in
physics—and they are, after all, the ones I was trying to get at. But then, “The
power of instruction is seldom of much efficacy except in those happy dispositions
where it is almost superfluous.” (Gibbons)

Still, I didn’t want to leave any student completely behind, as perhaps I did.
I think one way we could help the students more would be by putting more hard
work into developing a set of problems which would elucidate some of the ideas
in the lectures. Problems give a good opportunity to fill out the material of the
lectures and make more realistic, more complete, and more settled in the mind
the ideas that have been exposed.

I think, however, that there isn’t any solution to this problem of education
other than to realize that the best teaching can be done only when there is a direct
individual relationship between a student and a good teacher—a situation in which
the student discusses the ideas, thinks about the things, and talks about the things.
It’s impossible to learn very much by simply sitting in a lecture, or even by simply
doing problems that are assigned. But in our modern times we have so many
students to teach that we have to try to find some substitute for the ideal. Perhaps
my lectures can make some contribution. Perhaps in some small place where
there are individual teachers and students, they may get some inspiration or some
ideas from the lectures. Perhaps they will have fun thinking them through—or
going on to develop some of the ideas further.

RicHARD P. FEYNMAN
June, 1963



Foreword

For some forty years Richard P. Feynman focussed his curiosity on the mys-
terious workings of the physical world, and bent his intellect to searching out the
order in its chaos. Now, he has given two years of his ability and his energy to
his Lectures on Physics for beginning students. For them he has distilled the
essence of his knowledge, and has created in terms they can hope to grasp a
picture of the physicist’s universe. To his lectures he has brought the brilliance

" and clarity of his thought, the originality and vitality of his approach, and the
contagious enthusiasm of his delivery. It was a joy to behold. s

The first year’s lectures formed the basis for the first volume of this set of
books. We have tried in this the second volume to make some kind of a record
of a part of the second year’s lectures—which were given to the sophomore
class during the 1962-1963 academic year. The rest of the second year’s lec-
tures will make up Volume III.

Of the second year of lectures, the first two-thirds were devoted to a fairly
complete treatment of the physics of electricity and magnetism. Its presentation
was intended to serve a dual purpose. We hoped, first, to give the students a
complete view of one of the great chapters of physics—from the early gropings
of Franklin, through the great synthesis of Maxwell, on to the Lorentz electron
theory of material properties, and ending with the still unsolved dilemmas of
the electromagnetic self-energy. And we hoped, second, by introducing at the
outset the calculus of vector fields, fo give a solid introduction to the mathe-
matics of field theories. To emphasize the general utility of the mathematical
methods, related subjects from other parts of physics were sometimes analyzed
together with their electric counterparts. We continually tried to drive home
the generality of the mathematics. (“The same equations have the same solu-
tions.”) And we emphasized this point by the kinds of exercises and examina-
tions we gave with the course. :

Following the electromagnetism there are two chapters each on elasticity and
fluid flow. In the first chapter of each pair, the elementary and practical aspects
are treated. The second chapter on each subject attempts to give an overview of
the whole complex range of phenomena which the subject can lead to. These
four chapters can well be omitted without serious loss, since they are not at all a
necessary preparation for Volume III.

The last quarter, approximately, of the second year was dedicated to an intro-
duction to quantum mechanics. This material has been put into the third volume.

In this record of the Feynman Lectures we wished to do more than provide a
transcription of what was said. We hoped to make the written version as clear
an exposition as possible of the ideas on which the original lectures were based.
For some of the lectures this could be done by making only minor adjustments
of the wording in the original transcript. For others of the lectures a major re-
working and rearrangement of the material was required. Sometimes we felt
we should add some new material to improve the clarity or balance of the pres-
entation. Throughout the process we benefitted from the continual help and
advice of Professor Feynman.

The translation of over 1,000,000 spoken words into a coherent text on a
tight schedule is a formidable task, particularly when it is accompanied by the
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other onerous burdens which come with the introduction of a new course—
preparing for recitation sections, and meeting students, designing exercises and
examinations, and grading them, and so on. Many hands—and heads—were
involved. In some instances we have, I believe, been able to render a faithful
image—or a tenderly retouched portrait—of the original Feynman. In other
instances we have fallen far short of this ideal. Our successes are owed to all
those who helped. The failures, we regret. ;

As explained in detail in the Foreword to Volume I, these lectures were but
one aspect of a program initiated and supervised by the Physics Course Revision
Committee (R. B. Leighton, Chairman, H. V. Neher, and M. Sands) at the
California Institute of Technology, and supported financially by the Ford Foun-
dation. In addition, the following people helped with one aspect or another of
the preparation of textual material for this second volume: T. K. Caughey,
M. L. Clayton, J. B. Curcio, J. B. Hartle, T. W. H. Harvey, M. H. Israel,
W. J. Karzas, R. W. Kavanagh, R. B. Leighton, J. Mathews, M. S. Plesset,
F. L. Warren, W. Whaling, C. H. Wilts, and B. Zimmerman. Others con-
tributed indirectly through their work on the course: J. Blue, G. F. Chapline,
M. J. Clauser, R. Dolen, H. H. Hill, and A. M. Title. Professor Gerry Neuge-
bauer contributed in all aspects of our task with a diligence and devotion far
beyond the dictates of duty.

The story of physics you find here would, however, not have been, except for
the-extraordinary ability and industry of Richard P. Feynman.

MATTHEW SANDS
March, 1964
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Electromagnetism

1-1 Electrical forces -

Consider a force like gravitation which varies predominantly inversely as the
square of the distance, but which is about a billion-billion-billion-biilion times
stronger. And with another difference. There are two kinds of “matter,” which
we can call positive and negative. Like kinds repel and unlike kinds attract—
unlike gravity where there is only attraction. What would happen?

A bunch of positives would repel with an enormous force and spread out in
all directions. A bunch of negatives would do the same. But an evenly mixed
bunch of positives and negatives would do something completely different. The
opposite pieces would be pulled together by the enormous attractions. The net
result would be that the terrific forces would balance themselves out almost per-
fectly, by forming tight, fine mixtures of the positive and the negative, and between
two separate bunches of such mixtures there would be practically no attraction or
repulsion at all. K

There is such a force: the electrical force. And all matter is a mixture of posi-
tive protons and negative electrons which are attracting and repelling with this
great force. So perfect is the balance, however, that when you stand near someone
else you don’t feel any force at all. If there were even a little bit of unbalance you
would know it. If you were standing at arm’s length from someone and each of
you had one percent more electrons than protons, the repelling force would be in-
credible. How great? Enough to lift the Empire State Building? No! To lift
Mount Everest? No! The repulsion would be enough to lift a “weight” equal to
that of the entire earth!

With such enormous forces so perfectly balanced in this intimate mixture, it
is not .hard to understand that matter, trying to keep its positive and negative
charges in the finest balance, can have a great stiffness and strength. The Empire
State Building, for example, swings only eight feet in the wind because the electrical
forces hold every electron and proton more or less in its proper place. On the other
hand, if we look at matter on a scale small enough that we see only a few atoms,
any small piece will not, usually, have an equal number of positive and negative
charges, and so there will be strong residual electrical forces. Even when there are
equal numbers of Both charges in two neighboring small pieces, there may still be
large net electrical forces because the forces between individual charges vary
inversely as the square of the distance. A net force can arise if a negative charge of
one piece is closer to the positive than to the negative charges of the other piece.
The attractive forces can then be larger than the repulsive ones and there can be a
net attraction between two small pieces with no excess charges. The force that holds
the atoms together, and the chemical forces that hold molecules together, are
really electrical forces acting in regions where the balance of charge is not perfect,
or where the distances are very small. =

You know, of course, that atoms are made with .positive protons in the
nucleus and with electrons outside. You may ask: “If this electrical force is so
terrific, why don’t the protons and electrons just get on top of each other? If they
want to be in an intimate mixture, why isn’t it still more intimate?”’ The answer
has to do with the quantum effects. If we try to confine our electrons in a region
that is very close to the protons, then according to the uncertainty principle they
must have some mean square momentum which is larger the more we try to con-
fine them. It is this motion, required by the laws of quantum mechanics, that keeps
the electrical attraction from bringing the charges any closer together.
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There is another question: “What holds the nucleus together”? In a nucleus
there are several protons, all of which are positive. Why don’t they push them-
selves apart? It turns out that in nuclei there are, in addition to electrical forces,
nonelectrical forces, called nuclear forces, which are greater than the electrical
forces and which are able to hold the protons together in spite of the electrical
repulsion. The nuclear forces, however, have a short range—their force falls off
much more rapidly than 1/r2. And this has an important consequence. If a
nucleus has too many protons in it, it gets too big, and it will not stay together. An
example is uranium, with 92 protons. The nuclear forces act mainly between each
proton (or neutron) and its nearest neighbor, while the electrical forces act over
larger distances, giving a repulsion between each proton and all of the others in
the nucleus. The more protons in a nucleus, the stronger is the electrical repulsion,
until, as in the case of uranium, the balance is so delicate that the nucleus is almost
ready to fly apart from the repulsive electrical force. If such a nucleus is just
“tapped” lightly (as can be done by sending in a slow neutron), it breaks into two
pieces, each with positive charge, and these pieces fly apart by electrical repulsion.
The energy which is liberated is the energy of the atomic bomb. This energy is
usually called “nuclear” energy, but it is really “electrical” energy released when
electrical forces have overcome the attractive nuclear forces.

We may ask, finally, what holds a negatively charged electron together (since
it has no nuclear forces). If an electron is all made of one kind of substance, each
part should repel the other parts. Why, then, doesn’t it fly apart? But does the
electron have “parts”? Perhaps we should say that the electron is just a point and
that electrical forces only act between different point charges, so that the electron
does not act upon itself. Perhaps. All we can say is that the question of what
holds the electron together has produced many difficulties in the attempts to form
a complete theory of electromagnetism. The question has never been answered.
We will entertain overselves by discussing this subject some more in later chapters.

As we have seen, we should expect that it is a combination of electrical forces
and quantum-mechanical effects that will determine the detailed structure of
materials in bulk, and, therefore, their properties. Some materials are hard, some

_ are soft. Some are electrical “conductors’”’—because their electrons are free to

move about; others are “insulators”—because their electrons are held tightly to
individual atoms. We shall consider later how some of these properties come about,
but that is a very complicated subject, so we will begin by looking at the electrical
forces only in simple situations. We begin by treating only the laws of electricity—
including magnetism, which is really a part of the same subject.

We have said that the electrical force, like a gravitational force, decreases
inversely as the square of the distance between charges. This relationship is called
Coulomb’s law. But it is not precisely true when charges are moving—the elec-
trical forcés depend also on the motions of the charges in a complicated way. One
part of the force between moving charges we call the magnetic force. It is really
one aspect of an electrical effect. That is why we call the subject “electromag-
netism.”

There is an important general principle that makes it possible to treat elec-
tromagnetic forces in a relatively simple way. We find, from experiment, that the
force that acts on a particular charge—no matter how many other charges there
are or how they are moving—depends only on the position of that particular
charge, on the velocity of the charge, and on the amount of charge. We can write
the force F on a charge ¢ moving with a velocity v as

F = g(E + v X B). (1.1
We call E the electric field and B the magnetic field at the location of the charge.
The important thing is that the electrical forces from all the other charges in the
universe can be summarized by giving just these two vectors. Their values will
depend on where the charge is, and may change with time. Furthermore, if we
replace that charge with another charge, the force on the new charge will be just
in proportion to the amount of charge so long as all the rest of the charges in the
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world do not change their positionswor motions. (In real situations, of course, each
charge produces forces on all other charges in the neighborhood and may cause
these other charges to move, and so in some cases the fields can change if we replace
our particular charge by another.)

We know from Vol. I how to find the motion of a particle if we know the force
on it. Equation (1.1) can be combined with the equation of motion to give

%[-(-1__:,"2—';Lﬂ)ll2] =F =¢q(E+ v X B). 1.2)

So if E and B are given, we can find the motions. Now we need to know how the
E’s and B’s are produced. ’

One of the most important simplifying principles about the way the fields are
produced is this: Suppose a number of charges moving in some manner would
produce a field E;, and another set of charges would produce E,. If both sets of
charges are in place at the same time (keeping the same locations and motions
they had when considered separately), then the field produced is just the sum

E = E1 + Ez. (13)

This fact is called the principle of superposition of fields. It holds also for magnetic
fields.

This principle means that if we know the law for the electric and magnetic
fields produced by a single charge moving in an arbitrary way, then all the laws of
electrodynamics are complete. If we want to know the force on charge 4 we need
only calculate the E and B produced by each of the charges B, C, D, etc., and then
add the E’s and B’s from all the charges to find the fields, and from them the
forces acting on charge 4. If it had only turned out that the field produced by a
single charge was simple, this would be the neatest way to describe the laws of
electrodynamics. We have already given a description of this law (Chapter 28,
Vol. I) and it is, unfortunately, rather complicated.

It turns out that the form in which the laws of electrodynamics are simplest
are not what you might expect. It is not simplest to give a formula for the force that
one charge produces on another. It is true that when charges are standing still the
Coulomb force law is simple, but when charges are moving about the relations are
complicated by delays in time and by the effects of acceleration, among others.
As a result, we do not wish to present electrodynamics only through the force
laws between charges; we find it more convenient to consider another point ‘of

view—a point of view in which the laws of electrodynamics appear to be the most
easily manageable.

1-2 Electric and magnetic fields

First, we must extend, somewhat, our ideas of the electric and magnetic
vectors, E and B. We have defined them in terms of the forces that are felt by a
charge. We wish now to speak of electric and magnetic fields at a point even when
there is no charge present. We are saying, in effect, that since there are forces
“acting on” the charge, there is still “something’ there when the charge is removed.
If a charge located at the point (x, y, ) at the time 7 feels the force F given by
Eq. (1.1) we associate the vectors E and B with the point in space (x, ¥, z). We may
think of E(x, y, z, /) and B(x, y, z, f) as giving the forces that would be experienced
atthe time by a charge located at (x, p, z), with the condition that placing the charge
there did not disturb the positions or motions of all the other charges responsible
for the fields.

Following this idea, we associate with every point (x, y, z) in space two vectors
E and B. which may be changing with time. The electric and magnetic fields are,
then, viewed as vecror functions of x, y, z, and t. Since a vector is specified by its

components, each of the fields E(x, y, z, /) and B(x. v, z, 1) represent three mathe-
matical functions of x, y, z, and 1.
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Fig. 1-1. A vector field may be
represented by drawing a set of arrows
whose magnitudes and directions indicate
the values of the vector field at the points
from which the arrows are drawn.
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Fig. 1-2. A vector field can be
represented by drawing lines which are
tangent to the direction of the field vector
at each point, and by drawing the density
of lines proportional to the magnitude of
the field vector.
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Fig. 1-3. The flux of a vector field
through a surface is defined as the
average value of the normal component
of the vector times the area of the surface.

It is precisely because E (or B) can be specified at every point in space that it is
called a “field.” A “field” is any physical quantity which takes on different values
at different points in space. Temperature, for example, is a field—in this case a
scalar field, which we write as T(x, y, z). The temperature could also vary in time,
and we would say the temperature field is time-dependent, and write 7(x, y, z, ?).
Another example is the “velocity field” of a flowing liquid. We write v(x, y, z, 1)
for the velocity of the liquid at each point in space at the time z. It is a vector field.

Returning to the electromagnetic fields—although they are produced by
charges according to complicated formulas, they have the following important
characteristic: the relationships between the values ‘of the fields at one point and
the values at a nearby point are very simple. With only a few such relationships in
the form of differential equations we can describe the fields completely. It is in
terms of such equations that the laws of electrodynamics are most simply written.

There have been various inventions to help the mind visualize the behavior of
fields. The most correct is also the most abstract: we simply consider the fields as
mathematical functions of position and time. We can also attempt to get a mental
picture of the field by drawing vectors at many points in space, each of which gives
the field strength and direction at that point. Such a representation is shown in
Fig. 1-i. We can go further, however, and draw lines which are everywhere
tangent to the vectors—which, so to speak, follow the arrows and keep track of
the direction of the field. When we do this we lose track of the lengths of the
vectors, but we can keep track of the strength of the field by drawing the lines far
apart when the field is weak and close together when it is strong. We adopt the
convention that the number of lines per unit area at right angles to the lines is pro-
portional to the field strength. This is, of course, only an approximation, and it
will require, in general, that new lines sometimes start up in order to keep the
number up to the strength of the field. The field of Fig. 1-1 is represented by
field lines in Fig. 1-2.

1-3 Characteristics of vector fields

There are two mathematically important properties of a vector field which
we will use in our description of the laws of electricity from the field point of view.
Suppose we imagine a closed surface of some kind and ask whether we are losing
“something™ from the inside; that is, does the field have a quality of “outflow”?
For instance, for a velocity field we might -ask whether the velocity is always out-
ward on the surface or, more generally, whether more fluid flows out (per unit
time) than comes in. We call the net amount of fluid going out through the surface
per unit time the “flux of velocity” through the surface. The flow through an
element of a surface is just equal to the component of the velocity perpendicular
to the surface times the area of the surface. For an arbitrary closed surface, the
net outward flow—or flux—is the average outward normal component of the
velocity, times the area of the surface:

Flux = (average normal component)-(surface area). (1.4)

In the case of an electric field, we can mathematically define something
analogous to an outflow, and we again call it the flux, but of course it is not the
flow of any substance, because the electric field is not the velocity of anything. It
turns out, however, that the mathematical quantity which is the average normal
component of the field still has a useful significance. We speak, then, of the
electric flux—also defined by Eq. (1.4). Finally, it is also useful to speak of the
flux not only through a completely closed surface, but through any bounded sur-
face. As before, the flux through such a surface is defined as the average normal
component of a vector times the area of the surface. These ideas are illustrated in
Fig. 1-3.

There is a second property of a vector field that has to do with a line, rather
than a surface. Suppose again that we think of a velocity field that describes the
flow of a liquid. We might ask this interesting question: Is the liquid circulating?
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By that we mean: Is there a net rotational motion around some loop? Suppose
that we instantaneously freeze the liquid everywhere except inside of a tube which
is of uniform bore, and which goes in a loop that closes back on itself as in
Fig. 1-4. Outside of the tube the liquid stops moving, but inside the tube it may
keep on moving because of the momentum in the trapped liquid—that is, if there is
more momentum heading one way around the tube than the other. We define a
quantity called the circulation as the resulting speed of the liquid in the tube times its
circumference. We can again extend our ideas and define the “circulation” for any
vector field (even when there isn’t anything moving). For any vector field the
circulation around any imagined closed curve is defined as the average tangential
component of the vector (in a consistent sense) multiplied by the circumference
of the loop (Fig. 1-5).

Circulation = (average tangential component)-(distance around).

(1.5)

You will see that this definition does indeed give a number which is proportional
to the circulation velocity in the quickly frozen tube described above.

With just these two ideas—flux and circulation—we can describe all the laws
of electricity and magnetism at once. You may not understand the significance of
the laws right away, but they will give you some idea of the way the physics of
electromagnetism will be ultimately described.

1-4 The laws of electromagnetism
The first law of electromagnetism describes the flux of the electric field:

The flux of E through any closed surface = the net ch:rge inside s
0

(1.6)

where €, is a convenient constant. (The constant €, is usually read as “epsilon-
zero” or “‘epsilon-naught”.) If there are no charges inside the surface, even though
there are charges nearby outside the surface, the average normal component of E
is zero, so there is no net flux through the surface. To show the power of this
type of statement, we can show that Eq. (1.6) is the same as Coulomb’s law, pro-
vided only that we also add the idea that the field from a single charge is spherically
symmetric. For a point charge, we draw a sphere around the charge. Then the
average normal component is just the value of the magnitude of E at any point,
since the field must be directed radially and have the same strength for all points on
the sphere. Our rule now says that the field at the surface of the sphere, times the
area of the sphere—that is, the outgoing flux—is proportional to the charge inside.
If we were to make the radius of the sphere bigger, the area would increase as
the square of the radius. The average normal component of the electric field times
that area must still be equal to the same charge inside, and so the field must decrease
as the square of the distance—we get an “inverse square” field.

If we have an arbitrary stationary curve in space and measure the circulation
of the electric field around the curve, we will find that it-is not, in general, zero
(although it is for the Coulomb field). Rather, for electricity there is a second law
that states: for any surface S (not closed) whose edge is the curve C,

Circulation of E around C = gi (flux of B through S). (1.7)

We can complete the laws of the electromagnetic field by writing two corre-

sponding equations for the magnetic field B.

Flux of B through any closed surface = 0. (1.8)
For a surface S bounded by the curve C,
c?(circulation of B ar_ouhd C) = ‘% (flux of E through S)
% flux of electric current through S (1.9)
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Fig. 1-4. (a) The velocity field in a
liquid. Imagine a tube of uniform cross
section that follows an arbitrary closed
curve as in (b). If the liquid were suddenly
frozen everywhere except inside the
tube, the liquid in the tube would circulate

as shown in (c).
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Fig. 1-5. The circulation of a vector
field is the average tangential compo-
nent of the vector (in a consistent sense)
times the circumference of the loop.



