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INTRODUCTTION

This book contains part of the lectures which were presented during the Second
International Symposium on Computing Methods in Applied Sciences and Engineering,
December 15 to December 19, 1975, organised by IRIA-LABORIA under the sponsorship
of IFIP, AFCET and GAMNI.

More than 400 scientists and engineers from many countries attended this meeting.

The interest evidenced within the scientific community prompted IRIA to organise
such a meeting every two years, evolving topics to fit the developments of science
and techniques. With this goal in mind the next event in this series will take
place from December 5 to December 9, 1977.

The organizers wish to express their gratitude to Mr. A. DANZIN, Director of IRIA
and address their thanks to each session chairman who directed very interesting
discussions and also to all the speakers.

Sincere gratitude is also expressed to the IRIA Public Relations 0Office whose
help contributed greatly to the success of this Symposium.

The remainder of these proceedings are published as Lecture Notes in Economics
and Mathematical Systems, Volume 134.

R. GLOWINSKI J.L. LINNS

IRTA-LABORIA  Institut de Recherche d'Informatique et d'Automatique,

IRIA Research Laboratory.



INTRODUCTION

Le présent volume rassemble une partie des travaux présentés au Colloque
International sur les "Methodes de Calcul Scientifique et Technique" organisé
par 1'IRIA-LABORIA du 15 au 19 Decembre 1975, sous le patronage de 1'I.F.I.P.,
de 1'A.F.C.E.T. et du G.A.M.N.I.

Ce Colloque a réuni a Versailles prés de 400 chercheurs et ingénieurs de toutes
nationalites.

Devant 1'intér8t suscité dans des milieux scientifique variés, 1'IRIA a décide
d'organiser tous les deux ans, d une epoque semblable de 1'anngée, une réunion
de type analogue - naturellement avec une evolution des sujets adaptée au
developpement de la Science et des techniques. La prochaine manifestation de
cette série aura donc lieu du 5 au 9 Déecembre 1977.

Les organisateurs remercient Monsieur A. DANZIN, Directeur de 1'IRIA et les
divers Presidents de seance qui ont animé d'intéressantes discussions ainsi que
tous les conferenciers qui ont pris part & ce Colloque.

Nos remerciements vont egalement au Service des Relations Extérieurs de 1'IRIA
dont 1'aide a joue un rOle essentiel dans 1'organisation de cette rencontre.

L

L'autre partie de ce Colloque est publiée sous Lecture Notes in Economics and
Mathematical Systems, Volume 134.

R. GLOWINSKI J.L. LIONS

IRIA-LABORIA Institut de Recherche d'Informatique et d'Automatique,
IRIA Research Laboratory.
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A SIMPLE THEORY OF GEOMETRICAL STIFFNESS

WITH APPLICATIONS TO BEAM AND SHELL PROBLEMS

J.H. Argyris and P.C. Dunne
University of Stuttgart

SUMMARY

Geometrical stiffness is the basis for any attempt to study the behaviour of
slender beams and thin shells under conditions in which large deflections
may occur with smail strains. Not all problems require high accuracy in

the representation of the geometrical stiffness. These are generally certain
self-equilibrating stress systems (natural modes) which are the principal
contributors te the geometrical stiffness. In particular, stress systems which
produce rigid body moments due to rigid body rotations of the element are
generally most important. Also, very great differences in bending stiffness
about different axes may make it necessary to consider otherwise unimportant
natural forces.

Although beams are considered among the simplest of structural elements their
onalysis when bent and twisted in three dimensions is by no means simple and
the same is true of the consideration of their geometrical stiffness in space.
Thus the beam in space may be considered as a test case for the general
methods developed here.

Large deflection theory of plate and shells is generally concerned with
deflections of the order of the thickness which are sufficient to induce
considerable membrane stresses. Thus the non-linear effect arises from the
induced membrane stresses rather than from gross changes in geometry. The
problem of snap through and the perhaps rather academic problem of the

three dimensional elastica pose some very difficult finite element applications
in which the geometry changes are of the order of the structural dimensions.

To tackle such problems using a highly sophisticated shell element such as
SHEBA is not an easy undertaking. For other more immediately practical reasons
it has been necessary to develop a simple flat facet shell element with transverse
shear deformation also. This element, which is a displacement but not a
Rayleigh-Ritz element, has only 18 nodal freedoms and is adaptable to thin,
thick and sandwich type applications, is especially suitable for large deflection
problems.

The paper presents some large deflection examples for beams and it is hoped
also to have ready some non-trivial applications to shells.



. Introduction

A paper presented at the first IRIA conference [1] developed a relatively simple
theory of large strain in membranes and solid bodies. In compact solid bodies large
displacements are necessarily associated with large strains so that a separation of the
non-linear effects of large material strains and large geometry changes is not possible.
Thin rods and shells are special cases of solid bodies in which large displacements may
take place even when the strains remain small. It is clear that a comprehensive theory
of large strains with large displacements embraces that of large displacements with
small strains as a special case. Such a theory could indeed be used to provide a check
on any large displacement small strain theory. For engineering applications it would seem
that a large displacement theory restricted ab initio to small strains must be simpler and

therefore more economical than the more general theory.

The basic assumption of the theory to be given here is that within each finite
element the small displacement stress strain relations are valid. For this reason the
natural mode method is especially applicable. Stress and strain are here supposed to
apply in their generalised sense and may, for example, include bending moments and
curvatures. Some previous work [2,3] partially developed the theory and more recently
[4] an attempt was made to simplify the treatment of geometrical stiffness and to
elucidate some difficulties arising because of asymmetry due to the use of rotational
degrees of freedom. An alternative treatment, in which apparently no asymmetries are

observed, is due to Besseling [5] .

It is found that the treatment of geometrical stiffness is easier for natural modes
depending only on nodal displacements (translations). The stiffness matrix is always
symmetrical in this case. When nodal rotations or higher order nodal parameters are
used the geometrical stiffness matrices are asymmetrical. In spite of this the assembled
geometrical stiffness may be symmetrical and in many cases the same result may be
obtained by mathematically symmetrizing the element geometrical stiffnesses before

assembly. This will be so in elements with translational and rotational nodal freedoms



if the nodal moments are always applied as semi-tangential torques - that is a torque
represented by two equal forces pairs acting at the ends of a cross rigidly connected

to the node. If the nodal moments are not applied in this way they will give rise to
displacement dependent moments which will form an additional geometrical stiffness.
This latter geometrical stiffness will be symmetrical when the applied loads are

conservative but otherwise asymmetrical.

Although the theory is applicable to any finite element with nodal forces and moments
its application in practice is mainly to slender beams and thin shells. The slender beam
with much greater stiffness about one principal axis bent and twisted in space is one of
the most difficult non-linear problems in structural mechanics. It provides a test case
of more than academic interest for the present theory and also poses some very sensitive

numerical problems.

On the other hand the problem of large deflections in shells is not so difficuit from
the geometrical stiffness point of view. This is because the only geometrical stiffness
of importance is that arising from the membrane stresses. The high precision shell elements
such as SHEBA are in principle applicable to large deflection problems in shells. So far
as is known to the authors the considerable soft-ware investment, required to calculate
a three-dimensional elastica and problems of similar difficulty, has not yet been made.
For other reasons [4] it was necessary at ISD to develop a simple engineering accuracy
plate and shell element with transverse shear deformation and since this element involves
only translation and rotation freedoms it seemed a natural candidate to attumpt large
displacement shell problems. The element is a plane facet type triangle constructed by
a combination of Rayleigh-Ritz and physical lumping methods. Some small displacement
examples of the application of this element were given in[4] . In this paper some large

displacement examples are given.



2. Elements with only translational nodal freedoms.

This case is simpler than the general one and includes most practical membrane
and solid elements such as the TRIM and TET class. Such elements are characterised
by the fact that the nodal freedoms @ are vectors which are increments of global

position vectors g . Thus,

¥y = +9 M)

- 9 @

Note that the deformation of the element may be written in equivalent ways as

o= WY = oyle) €}

where @y is the vector of natural modes. For those not familiar with the idea
of natural modes we may give the example in which they are the extensions of the
sides in the TRIM 3 or TET 4 elements [ 2, 3] . Thus the natural modes are not
unique or complete but are always equal in number to the difference of the element
nodal freedoms and the rigid body freedoms. Also in the present context of small
strain large displacement theory the natural modes are small even when the global
displacements are large. For a finite element analysis, including geometrical stiff-

ness, we require the increment of @, up to the second order in the increment

of @ . Fora particular natural mode pr , the increment,
2
9 ¢ %% @

B Np_ N
Svea ™ Tag 2 ' 7% Bgagt %



From the first expression on the right of (4) we have, to first order accuracy,

oy = ayQ,

where,
a,: {a,, ... .
and
g
Np
a,

P= ap

The matrix @,  depends on
ON + aNd

where from (4),

5)

a,, .. a

P Nv} = ©

@)

and for an increment becomes
[ o] f:, . ay,

(8)

- ot o8N
Tea = & dpdept ©

Note that equation (4) may be written as

P = [ @y ‘T"NA]PA

This equation is useful when

(10)

PN is accumulated from the increments

instead of using the more accurate up-dating from equation (3). The matrices amy

and «= are the only properties of an element required, in addition to the natural
N y prop q

stiffness, to carry out a complete large displacement small strain calculation.



However, in elements with a large number of nodal freedoms it may be sufficiently
accurate to include only some of the natural modes in ay, and even to consider
only the rigid body components of P as contributing to a, - For the lafter
purpose we have to define also the rigid body modes @  which together with

PN form the vector
' - {pov) = Ple) an

In the three dimensional case this is valid only for small values of the rigid body

rotations in Po
As an example of the formation of the rigid body movements from the global

displacements we take the TRIM 3 element. It will be assumed that we require a

relation of the form
= ag = K (12)

To have a consistent relation between the cartesian expression for small rotations and

the rigid body rotation 9,3  one must have

1 (0v
fo3 = = (W - 3 (19

where u, v are the cartesian displacements with respect to orthogonal axes

X, Y . The linear displacement field in the TRIM 3 is

c
n

Po + PyX + Py
Go *+ X + Q¥

(14)

<
n



Then if the origin of X, V¥ is at the centroid and u, , v, etc. are the nodal

displacements,

Uy + U, + Uy = 3po] (15)
Vi + vy, + vy = 3q,
and hence
- o
Po1 = Po = '3_[‘-’1+ u, + u3]
(16)
_ _ A
Po2 = Qo = T[V1 v vy 4 vy
From (13)
]
f-3= T(q1 ‘pz) a7

q9,, P,y

may be found from equations (14) written for each corner. The result is,

_
fo3 = 5 (Xp3Uy * Yoz ¥y + X3 Uy + ¥y

+ XUy + ¥y, Vy)

(18)

where

§2 = area of triangle.

Thus the matrix @m, associated with

LI {“1 vy Uy ¥y Uy V3} (%)



Remembering that the natural modes are the elongations of the sides the matrix

is,

where

i -

l-'l

[

Inversion of

A =

e

in which

10

[0 0
X3 Y3
Lxu T2

(12J

@ now gives

131

A, A,]

B
0
10
0
10
0

X3 Va3
0 0
- X2 2

X33

- X3

0

13 0 3 0 13 0 |
0 13 0 1/3 0 1/3

e X T ¢ T W VD & IS P P 4:

| 42 4R 4R 4R 4R 42 |

}'231

Y3

0

-

ay

(21)

(22)

(23)



