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Preface

The concept of fractional derivative appeared for the first time in a famous corre-
spondence between G.A. de L'Hospital and G.W. Leibniz, in 1695. Many mathe-
maticians have further developed this area and we can mention the studies of L.
Euler (1730), J.L. Lagrange (1772), P.S. Laplace (1812), J.B.J. Fourier (1822), N.H.
Abel (1823), J. Liouville (1832), B. Riemann (1847), H.L. Greer (1859), H. Holm-
gren (1865), A.K. Grimwald (1867), A.V. Letnikov (1868), N.Ya. Sonin (1869), H.
Laurent (1884), P.A. Nekrassov (1888), A. Krug (1890), J. Hadamard (1892), O.
Heaviside (1892), S. Pincherle (1902), G.H. Hardy and J.E. Littlewood (1917), H.
Weyl (1919), P. Lévy (1923), A. Marchaud (1927), H.'T. Davis (1924), A. Zygmund
(1935), E.R. Love (1938), A. Erdélyi (1939), H. Kober (1940), D.V. Widder (1941),
M. Riesz (1949) and W. Feller (1952). In the past sixty years, fractional calculus
had played a very important role in various fields such as physics, chemistry, me-
chanics, electricity, biology, economics, control theory, signal and image processing,
biophysics, blood flow phenomena, aerodynamics, fitting of experimental data, etc.

In the last decade, fractional calculus has been recognized as one of the best tools
to describe long-memory processes. Such models are interesting for engineers and
physicists but also for pure mathematicians. The most important among such mod-
els are those described by differential equations containing fractional-order deriva-
tives. Their evolutions behave in a much more complex way than in the classical
integer-order case and the study of the corresponding theory is a hugely demand-
ing task. Although some results of qualitative analysis for fractional differential
equations can be similarly obtained, many classical methods are hardly applicable
directly to fractional differential equations. New theories and methods are thus re-
quired to be specifically developed, whose investigation becomes more challenging.
Comparing with classical theory of differential equations, the researches on the the-
ory of fractional differential equations are only on their initial stage of development.

This monograph is devoted to a rapidly developing area of the research for the
qualitative theory of fractional differential equations. In particular, we are inter-
ested in the basic theory of fractional differential equations. Such basic theory
should be the starting point for further research concerning the dynamics, control,
numerical analysis and applications of fractional differential equations. The book
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is divided into six chapters. Chapter 1 introduces preliminary facts from fractional
calculus, nonlinear analysis and semigroup theory. In Chapter 2, we present a uni-
fied framework to investigate the basic existence theory for discontinuous fractional
functional differential equations with bounded delay, unbounded delay and infinite
delay. Chapter 3 is devoted to the study of fractional differential equations in Ba-
nach spaces via measure of noncompactness method, topological degree method
and Picard operator technique. In Chapter 4, we first present some techniques
for the investigation of fractional evolution equations governed by Cy-semigroup,
then we discuss fractional evolution equations with almost sectorial operators. In
Chapter 5, by using critical point theory, we give a new approach to study bound-
ary value problems of fractional differential equations. And in the last chapter,
we present recent advances on theory for fractional partial differential equations
including fractional Euler-Lagrange equations, time-fractional diffusion equations,
fractional Hamiltonian systems and fractional Schrodinger equations.

The material in this monograph are based on the research work carried out by
the author and other experts during the past four years. The book is self-contained
and unified in presentation, and it provides the necessary background material
required to go further into the subject and explore the rich research literature.
Each chapter concludes with a section devoted to notes and bibliographical remarks
and all abstract results are illustrated by examples. The tools used include many
classical and modern nonlinear analysis methods. This book is useful for researchers
and graduate students for research, seminars, and advanced graduate courses, in
pure and applied mathematics, physics, mechanics, engineering, biology, and related
disciplines.

I would like to thank Professors D. Baleanu, K. Balachandran, M. Benchohra,
L. Bourdin, Y.Q. Chen, I. Vasundhara Devi, M. Feckan, N.J. Ford, W. Jiang,
V. Kiryakova, F. Liu, J.A.T. Machado, M.M. Meerschaert, S. Momani, G.M.
N'Guérékata, J.J. Nieto, V.E. Tarasov, J.J. Trujillo, A.S. Vatsala and M. Yamamoto
for their support. [ also wish to express my appreciation to my colleagues, Profes-
sors Z.B. Bai, Y.K. Chang, H.R. Sun, J.R. Wang, R.N. Wang, S.Q. Zhang and my
graduate students H.B. Gu, F. Jiao, Y.H. Lan and L. Zhang for their help. Finally,
I thank the editorial assistance of World Scientific Publishing Co., especially Ms.
L.F. Kwong.

I acknowledge with gratitude the support of National Natural Science Founda-
tion of China (11271309, 10971173), the Specialized Research Fund for the Doctoral
Program of Higher Education (20114301110001) and Key Projects of Hunan Provin-
cial Natural Science Foundation of China (12JJ2001).

Yong Zhou
October 2013, Xiangtan, China
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Chapter 1

Preliminaries

1.1 Introduction

In this chapter, we introduce some notations and basic facts on fractional calculus,
nonlinear analysis and semigroup which are needed throughout this book.

1.2 Some Notations, Concepts and Lemmas

As usual N denotes the set of positive integer numbers and Ng the set of nonnegative
integer numbers. R denotes the real numbers, Ry denotes the set of nonnegative
reals and RT the set of positive reals. Let C be the set of complex numbers.

We recall that a vector space X equipped with a norm | - | is called a normed
vector space. A subset F of a normed vector space X is said to be bounded if there
exists a number K such that |z| < K for all z € E. A subset E of a normed vector
space X is called convex if for any z,y € E, ax + (1 —a)y € E for all a € [0, 1].

A sequence {z,} in a normed vector space X is said to converge to the vector x
in X if and only if the sequence {|z, — z|} converges to zero as n — oo. A sequence
{z»} in a normed vector space X is called a Cauchy sequence if for every ¢ > 0
there exists an NV = N (g) such that for all n.m > N(¢), |z, — x| < €. Clearly a
convergent sequence is also a Cauchy sequence, but the converse may not be true.
A space X where every Cauchy sequence of elements of X converges to an element
of X is called a complete space. A complete normed vector space is said to be a
Banach space.

Let E be a subset of a Banach space X. A point @ € X is said to be a limit
point of E if there exists a sequence of vectors in E which converges to . We say a
subset E is closed if E contains all of its limit points. The union of E and its limit
points is called the closure of E and will be denoted by E. Let X, F be normed
vector spaces, and E be a subset of X. An operator .7 : F — F is continuous at a
point z € F if and only if for any € > 0 there is a § > 0 such that |7z — Ty| < ¢
for all y € E with |z —y| < d. Further, .7 is continuous on E. or simply continuous,
if it is continuous at all points of E.
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We say that a subset E of a Banach space X is compact if every sequence of
vectors in E contains a subsequence which converges to a vector in . We say that
E is relatively compact in X if every sequence of vectors in £ contains a subsequence
which converges to a vector in X, i.e., E is relatively compact in X if E is compact.

Let J = [a,b] (—o0 < a < b < o0) be a finite interval of R. We assume that X
is a Banach space with the norm |- |. Denote C(J, X') be the Banach space of all
continuous functions from J into X with the norm

]l = sup |z(t)],
teJ

where z € C(J,X). C™"(J,X) (n € Ny) denotes the set of mappings having n
times continuously differentiable on J, AC(J, X) is the space of functions which
are absolutely continuous on J and AC™(J, X) (n € Ny) is the space of functions
f such that f € C»Y(J,X) and f(*~Y € AC(J,X). In particular, AC*(J, X) =
AC(J, X).

Let 1 < p <oo. LP(J, X) denotes the Banach space of all measurable functions
f:J— X. LP(J, X) is normed by

1 Fllzes = (/J‘f(”"’dtya 1<p<o,

inf {sup |f(£)]}, p=oc.
w(J)=0 te\J
In particular, Ll(J.X ) is the Banach space of measurable functions f : J — X with
the norm

||f||LJ=/J|f(t)|dt.

and L>(J, X) is the Banach space of measurable functions f : J — X which are
bounded, equipped with the norm

|flles =inf{c > 0:|f(t)] <c, ae. t € J}.

Lemma 1.1 (Holder inequality). Assume that p,qg > 1, and % +% =1. If
felpP(J,X),ge LI(J,X), then for 1 <p<oo, fge L'(J, X) and

Wfglles < N fllzrsllgllpas-

A family F in C(J,X) is called uniformly bounded if there exists a positive

constant K such that |f(¢{)] < K for all ¢ € J and all f € F. Further, F is
called equicontinuous, if for every £ > 0 there exists a § = d(g) > 0 such that
|f(t1) — f(t2)| < e for all t;,ty € J with |[t; —t3] < d and all f € F.
Lemma 1.2 (Arzela-Ascoli’s theorem). If a family F = {f(t)} in C(J.R) is
uniformly bounded and equicontinuous on .J, then F' has a uniformly convergent
subsequence {f,(t)}o2,. If a family F = {f(¢)} in C(J, X) is uniformly bounded
and equicontinuous on J, and for any t* € J, {f(t*)} is relatively compact, then F
has a uniformly convergent subsequence {f,(#)}5,.
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The Arzela-Ascoli’s Theorem is the key to the following result: A subset F' in

C(J,R) is relatively compact if and only if it is uniformly bounded and equicontin-
uous on J.
Lemma 1.3 (Lebesgue’s dominated convergence theorem). Let E be a
measurable set and let {f,} be a sequence of measurable functions such that
lim, o0 fn(@) = f(z) ae.in E, and for every n € N, |fn(z)| < g(z) a.e. in E,
where g is integrable on F. Then

Jm [ ez = [ .

Finally, we state the Bochner’s theorem.
Lemma 1.4 (Bochner’s theorem). A measurable function f : (a,b) = X is
Bochner integrable if | f| is Lebesgue integrable.

1.3 Fractional Calculus

The gamma function I'(z) is defined by
oo
I'(2) —/ t*"te7tdt (Re(z) > 0),
0

where t*71 = e(>=Dlog®)  This integral is convergent for all complex z € C
(Re(z) > 0).
For this function the reduction formula
I'(z+1)==2I(z) (Re(z)>0)
holds. In particular, if z = n € Ny, then
'n+1)=n! (ne€Ny)

with (as usual) 0! = 1.

Let us consider some of the starting points for a discussion of fractional calculus.

One development begins with a generalization of repeated integration. Thus if f is
locally integrable on (¢, 00), then the n-fold iterated integral is given by

1 51 Sn—1
D) = / d51/ dss - / Sf(sp)dsy
C 1 C , C

= m /; (t — S)n_'lf(S)dS

for almost all ¢ with —co < ¢ <t < 0o and n € N. Writing (n — 1)! = T'(n), an
immediate generalization is the integral of f of fractional order o > 0,

'
Dy f(t) = %a)/c (t— S)O‘_lf(S)ds (left hand)
and similarly for —oo <t < d < o0

—a 1 ¢ a—1 C
D f(t) = m/ﬁ (s —)*" " f(s)ds (right hand)
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both being defined for suitable f.

A number of definitions for the fractional derivative has emerged over the years,
we refer the reader to Diethelm, 2010; Hilfer, 2006; Kilbas, Srivastava and Trujillo,
2006; Miller and Ross, 1993; Podlubny, 1999. In this book, we restrict our attention
to the use of the Riemann-Liouville and Caputo fractional derivatives. In this
section, we introduce some basic definitions and properties of the fractional integrals
and fractional derivatives which are used further in this book. The materials in this
section are taken from Kilbas, Srivastava and Trujillo, 2006.

1.3.1 Definitions

Definition 1.5 (Left and right Riemann-Liouville fractional integrals). Let

= [a,b] (—o0 < a < b < o) be a finite interval of R. The left and right Riemann-
Liouville fractional integrals ,D; @ f(¢) and (D, @ f(t) of order a € R, are defined
by

D) = /(t—s)"‘ Lf(s)ds, t>a, a>0 (1.1)

T(a)

and

—a 1 ’ a—1 -
¢ Dy f(t) = m/t (s —t)* " f(s)ds, t<b, a>0, (1.2)

respectively, provided the right-hand sides are pointwise defined on [a,b]. When
a =n € N, the definitions (1.1) and (1.2) coincide with the n-th integrals of the
form

D0 = g [ (6= 9 f(s)as

and
b
_ —___(n_ll)!/t (s — )L f(s)ds.

Definition 1.6 (Left and right Riemann-Liouville fractional derivatives).
The left and right Riemann-Liouville fractional derivatives o D§* f(¢) and (Dg f(t) of
order o € Ry, are defined by

DEF(E) = Sa D7 f(1)

5 ¢ P (1.3
1 d n—o—
- de(/ =), £>a

n

DS = (-1 D" ()

L dn o (1.4)
- F(n—a)(_l) i (/t (s—1) ‘f(s)ds>, t<b,

¢ Dy " f(t)

and
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respectively, where n = [a] + 1, [@] means the integer part of a. In particular, when
a =n € Ny, then

DYf(t) =Dy f(t) = f(2),
DPf(t)=f(t) and (DYf(H) = (-1)"f™M @),

where £ (t) is the usual derivative of f(t) of order n. If 0 < @ < 1, then

and

d b
thf(t):—ﬁa(/; (s—t)_“f(s)ds). t <b.

Remark 1.7. If f € C([a,b],RY), it is obvious that Riemann-Liouville fractional
integral of order a > 0 exists on [a,b]. On the other hand, following Lemma
2.2 in Kilbas, Srivastava and Trujillo, 2006, we know that the Riemann-Liouville
fractional derivative of order @ € [n — 1,n) exists almost everywhere on [a,b] if
f € AC™([a,b],RY).

The left and right Caputo fractional derivatives are defined via above Riemann-
Liouville fractional derivatives.
Definition 1.8 (Left and right Caputo fractional derivatives). The left and
right Caputo fractional derivatives ¢ D@ f(t) and tCDg‘ f(t) of order @ € R, are
defined by

n—1

G o f#) (a k =
SDZf(t)=oDf f(t Z —a) (1.5)
and
i — Fb
Cpgf(t) = LD,, Z (b —t) ] (1.6)
respectively, where
n=[al+1 for a« € Ng; n = a for a € Nj. (1.7)

In particular, when 0 < a < 1, then
DY f(t) = o DY (f(t) — f(a))
and
£ D f(t) = «D§(f(t) — (b))

The Riemann-Liouville fractional derivative and the Caputo fractional deriva-
tive are connected with each other by the following relations.
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Property 1.9.

(i) If a« &€ Ng and f(t) is a function for which the Caputo fractional derivatives
CDgf(t) and €D f(t) of order @ € R* exist together with the Riemann-
Liouville fractional derivatives o D¢ f(t) and (D} f(t), then

C'Daf( ) Dcxf f(k) a)k—a
ot - Z «T(k—a+ 1) ‘
and
CDg(t) = DE (1) OOy,
kOFk a+1)

where n = [a] + 1. In particular, when 0 < a < 1, we have

CDRF(t) = aDEf(t) — =2 D (¢ —a)-o

I'l—a«)
and b
EDRI0 = DY F(0) ~ i e 0= 07

(ii) If @ = n € Ny and the usual derivative f(™)(t) of order n exists, then ¢ D} f(t)
and ¢ D} f(t) are represented by

SDf(t) = fM() and {Dpf(t) = (=1)"fM (). (1.8)
Property 1.10. Let o € Ry and let n be given by (1.7). If f € AC"([a,b],RY),

then the Caputo fractional derivatives €D f(t) and EDg f(t) exist almost every-
where on [a, b].

(i) If o« € No, S D f(t) and CD“f( t) are represented by

ED810 = oy ([ €= 9o s)as) (19)
and "
v —1)"
CDg f(t) = #_’7)( / (s—t)”‘“‘lf("’(s)ds) (1.10)
t
respectively, where n = [a] + 1. In particular, when 0 < a < 1 and f €
AC([a,b],RN),
1 t
CDEf(t) = m—_a)( f (t—s)“‘f’(s)ds) (1.11)
and
oDgf) = ! ' £~ f'(s)d 1.12
£0510) =~y ([ e =07 0as). (112)
(ii) If @« = n € Ny then $ D¢ f(t) and € D¢ f(t) are represented by (1.8). In partic-
ular,

e DUF() = DY) = f(t).



