

Green Chemistry

Environmentally Benign Reactions

CRC is an imprint of the Taylor & Francis Group, an informa business

Green Chemistry: Environmentally Benign Reactions

© Ane Books India

First Published in 2008 by

Ane Books India

4821 Parwana Bhawan, 1st Floor 24 Ansari Road, Darya Ganj, New Delhi -110 002, India

Tel: +91 (011) 2327 6843-44, 2324 6385

Fax: +91 (011) 2327 6863 e-mail: kapoor@anebooks.com Website: www.anebooks.com

For

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway, NW, Suite 300

Boca Raton, FL 33487 U.S.A.

Tel: 561 998 2541

Fax: 561 997 7249 or 561 998 2559 Web: www.taylorandfrancis.com

For distribution in rest of the world other than the Indian sub-continent

ISBN-10: 1 42007 070 3 ISBN-13: 978 1 42007 070 5

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by means, electronic, mechanical, photocopying, recording and/or otherwise, without the prior written permission of the publishers. This book may not be lent, resold, hired out or otherwise disposed of by way of trade in any form, binding or cover other than that in which it is published, without the prior consent of the publishers.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

Printed at Brijbasi Art Press, Noida

Green Chemistry

Environmentally Benign Reactions

Preface

Green chemistry is basically environmentally benign chemical synthesis and is helpful to reduce environment pollution. A large number of organic reaction were earlier carried out under anhydrous conditions and using volatile organic solvents like benzene, which cause environmental problems and are also potential carcinogenic. Also the bye products are difficult to dispose of.

With the advancements of knowledge and new developments, it is now possible to carry out large number of reactions in aqueous phase, using phase transfer catalysts, using sonication and microwave technologies. Some reactions have also be performed enzymatically and photochemically. It is now possible to carry out a number of reactions using the versatile liquids and also in solid state.

The book is divided into three chapters. Introduction to Green Chemistry is described in Chapter 1. The second chapter deals with those reactions which are now performed under the so called green conditions. Such reactions are now referred to as Green Reactions. Finally in chapter 3 are described a number of preparations in aqueous phase, using phase transfer catalysis using sonication and microwave technologies. Also some preparation carried out enzymatically and photochemically. It is now possible to perform by using ionic liquids as solvents are also described.

The author expresses his sincere thanks to Dr. Pooja Bhagat, Dr. Madhu Chopra for all the help they have rendered.

Grateful thanks are due to Prof. Sukh Dev FNA, INSA Professor, New Delhi, Prof. J. M. Khurana, Department of Chemistry and Dr. R. K. Suri, Additional Director, Ministry of Forests, Government of India.

Finally I take the opportunity to thank Prof. Ramesh Chandra, Director, Dr. B. R. Ambedkar Centre for Biomedical Research University of Delhi, Delhi for all the help rendered.

V. K. Ahluwalia

Foreword

I feel happy to congratulate Prof. V. K. Ahluwalia on his writing a book on "Green Chemistry - Environmentally Benign Reactions". The book is replete with basic principles of Green Chemistry and requisite details that are necessary to obtain a desirable organic reactions (which earlier needed anhydrous conditions and used volatile organic solvents) under green condition. It is hoped that this development will go a long way in reducing not only environmental pollution but also effecting atom economy.

The book has been very well written and presented in a lucid manner. The book is so comprehensive that it can serve as a practical guide to the researchers (including M.Sc., M.Phil. and Ph.D) in various Industries, Universities and College Laboratories.

Dr. R. K. Suri

Additional Director Government of India Ministry of Environment & Forests Paryavaran Bhavan, C.G.O. Complex Lodi Road, New Delhi-110003

Contents

	Pref Fore	ace word		v vii
1.	GRI	EEN CH	HEMISTRY	1
	11	Introd	uction eed of Green Chemistry	1 1
			bles of Green Chemistry	2
			ng a Green Synthesis in a Chemical Laboratory	10
2.	GRI	EEN RE	EACTIONS	17
		Introd	uction	17
	2.1		in Condensation	17
		Mecha	nism	18
		2.1.1	Acyloin Condensation using coenzyme, Thiamine	20
		2.1.2	Applications	21
	2.2	Aldol	Condensation	22
		Mecha	ınism	22
		The Al	ldol	23
		2.2.1	Acid-Catalysed Aldol Condensation	23
		2.2.2	Crossed Aldol Condensation	24
		2.2.3	Aldol Type Condensations of Aldehydes with	
			NitroAlkanes and Nitriles	27
		2.2.4	Vinylogous Aldol Reaction	28
		2.2.5	Aldol Condensation of Silyl Enol Ethers in	
			Aqueous Media	28
		2.2.6	Aldol Condensation in Solid Phase	29
		2.2.7	Applications	30
	2.3	Arndt-	-Eistert Synthesis	33
		Mecha	nism	34
		2.3.1	Applications	35
	2.4	Baeyer	r–Villiger Oxidation	38

x Contents

	Mechai	nism	39
	Migrato	ory Aptitude	40
	2.4.1	Baeyer-Villiger Oxidation in Aqueous Phase	41
	2.4.2	Baeyer-Villiger Oxidation in Solid State	42
	2.4.3	Enzymatic Baeyer-Villiger Oxidation	42
	2.4.4	Applications	43
2.5	Barbier	Reaction	47
	2.5.1	Barbier Reaction under sonication	47
	2.5.2	Applications	48
2.6	Barton	Reaction	50
	Mechai		50
	2.6.1	Applications	50
2.7	Benzoi	n Condensation	52
	Mechai	nism	53
	2.7.1	Benzoin condensation under catalytic conditions	53
	2.7.2	Applications	54
2.8	Baker-	VenkatAraman Rearrangement	56
	2.8.1	PTC catalysed synthesis of Flavones	56
	Mecha	nism	57
	2.8.2	Application	57
2.9		ault Reaction	57
		Bouveault Reactions under sonication	58
2.10		zaro Reaction	58
	Mecha	nism	59
		Crossed Cannizzaro Reaction	60
	2.10.2	Intramolecular Cannizzaro Reaction	60
		Cannizzaro reactions under sonication	61
		Applications	61
2.11		Rearrangement	63
	Mecha		63
		Claisen Rearrangement in Water	66
		Applications (Classical Claisen Condensation)	66
		Applications (Aqueous Phase Claisen Rearrangement)	67
		n–Schmidt Reaction	69
,	Mecha		70
		Claisen schmidt reaction in aqueous phase	70
		Applications	71
2.13		nensen Reduction	73
	Mecha		73
	Limitat		73
		Applications	74
2.14		Reaction	76
	Mecha		77
	2.14.1	Applications	77

Contents	AI
2.15 Darzen Reaction	79
2.15.1 Darzen reaction in presence of phase transfer catalyst	79
Mechanism	80
2.15.2 Applications	81
2.16 Dieckmann Condensation	82
Mechanism	83
2.16.1 Dieckmann Condensation in Solid State	83
2.16.2 Dieckmann Condensation Under Sonication	83
2.16.3 Dieckmann Condensation Using Polymer	
Support Technique	84
2.16.4 Applications	84
2.17 Diels-Alder Reaction	86
Mechanism	89
2.17.1 Diels-Alder Reactions under microwave Irradiation	89
2.17.2 Diels–Alder reactions in aqueous phase	89
2.17.3 Diels-Alder reaction in Ionic Liquids	89
2.18 Grignard Reaction	90
Grignard Reagent	90
2.18.1 Grignard reaction under Sonication	90
Structure of grignard Reagent	91
Grignard Reaction	91
Reaction Mechanism	92
Limitations	92
2.18.2 Grignard Reaction in Solid State	93 94
2.18.3 Applications	103
2.19 Heck Reaction	103
Mechanism	103
2.19.1 Heck reaction in aqueous phase2.19.2 Heck reaction under PTC conditions	103
2.19.2 Heck reaction under FTC conditions 2.19.3 Heck reaction in Ionic Liquids	105
2.19.3 Freek feaction in folic Equids 2.19.4 Applications	105
2.20 Knoevenagel Condensation	106
Mechanism	107
2.20.1 Knoevenagel Reaction in Water	108
2.20.2 Knoevenagel Reaction in Solid State	109
2.20.3 Knoevenagel Reaction in Ionic Liquids	109
2.20.4 Applications	109
2.21 Michael Addition	111
Mechanism	111
2.21.1 Michael Addition Under PTC Conditions	113
2.21.2 Michael Addition in Aqueous Medium	113
2.21.3 Michael Addition in Solid State	116
2.21.4 Michael Addition in Ionic liquids	118
2.21.5 Applications	119

xii Contents

3

2.22 Mukaiy	vama Reaction	123
	Mukaiyama reaction in Aqueous Phase	124
	natsky Reaction	125
Mechai	nism	125
2.23.1	Reformatsky Reaction Using Sonication	126
	Reformatsky Reaction in Solid State	127
	Applications	127
	ns–Smith Reaction	130
Mechai	nism	130
2.24.1	Simmons-Smith Reaction Under Sonication	131
2.24.2	Applications	132
2.25 Strecke	er Synthesis	133
Mecha	nism	134
2.25.1	Strecker Synthesis Under Sonication	134
	Applications	135
2.26 Ullman	in Reaction	136
Mecha	nism	136
2.26.1	Ullmann coupling under sonication	137
2.26.2	Applications	138
2.27 Weiss-	-Cook Reaction	140
2.28 William	nsons Ether Synthesis	140
Mecha	nism	141
2.28.1	Phase Transfer Catalysed Williamson Ether Synthesis	141
	Applications	142
2.29 Wittig	Reaction	143
_	osphorus Ylides	144
Mecha	nism	144
2.29.1	The Wittig Reaction with Aqueous Sodium Hydroxide	145
	Modifications of Wittig Reagent	146
2.29.2	Wittig Reaction in Solid Phase	148
2.29.3	Wittig Reaction in Ionic Liquids	149
2.29.4	Applications	149
2.30 Wurtz		152
Mecha	nism	153
2.30.1	Wurtz Reaction under Sonication	154
2.30.2	Wurtz Reaction in Water	154
2.30.3	Applications	154
GREENPR	REPARATION	155
3.1 Aquou	s Phase Reactions	155
3.1.1	Hydrolysis of Methyl Salicylate with Alkali	155
3.1.2		156
3.1.3	6-Ethoxycarbonyl-3,5-diphenyl-2-cyclohexenone	157
3.1.4	$\Delta^{1,9}$ -Octalone	159

	3.1.5	p-Ethoxyacetanilide (Phenacetin)	160
	3.1.6	p-Acetamidophenol (Tylenol)	161
	3.1.7	Vanillideneactone	162
	3.1.8	2,4-dihydroxybenzoic aicd (β–resorcylic acid)	163
	3.1.9	Iodoform	164
	3.1.10	Endo-cis-1,4-endoxo- Δ^5 -cyclohexene-2,	
		3-dicarboxylic acid	164
	3.1.11	Trans stilbene	165
	3.1.12	2-Methyl-2-(3-oxobutyl)-1, 3-cyclopentanedione.	166
	3.1.13	Hetero Dields-Alder Adduct	167
3.2	Solid s	tate (solventless) reactions	168
	3.2.1	3-Pyridyl-4(3H) quinazolone	168
	3.2.2	Diphenylcarbinol	168
	3.2.3	Phenyl benzoate	169
3.3	Photoc	hemical Reactions	169
	3.3.1	Benzopionacol	169
	3.3.2	Conversion of trans azobenzene to cis azobenzene	170
	3.3.3	Conversionn of trans stilbene into cis stilbene	172
3.4	PTC ca	atalysed reactions	172
	3.4.1	Phenylisocyanide ($C_6H_5N \equiv C$)	172
	3.4.2	1-Cyano Octane (CH ₃ (CH ₂) ₆ CH ₂ CN)	173
	3.4.3	1-Oxaspiro-[2,5]-octane-2-carbonitrile	174
	3.4.4	3,4-Diphenyl-7-hydroxycoumarin	174
	3.4.5	Flavone	176
	3.4.6	Dichloronorcarane [2,2-Dichlorobicyclo (4.1.0) heptane]	177
	3.4.7	Oxidation of toluene to benzoic acid	178
	3.4.8	Benzonitrile from benzamide	179
	3.4.9	n-Butyl benzyl ether	180
		Salicylaldehyde	181
3.5		ngement Reactions	182
	3.5.1	Benzopinacolone	182
	3.5.2	2-Allyl phenol	183
3.6		vave induced reactions	184
		9,10-Dihydroanthracene-endo-α,β-succinic anhydride	
	2,012	(Anthracene-maleic anhydride adduct)	184
	3.6.2	3-methyl-1-phenyl-5-pyrazolone	185
	3.6.3	Preparation of derivatives of some organic compounds	186
3.7		atic Transformations	187
5.7	3.7.1	Ethanol	187
	2.7.11	Analysis of the distillate	188
	3.7.2	(S)-(+)-Ethyl 3-hydroxybutanoate	189
	J.1.L	Calculation of optical purity or Enantiomeric excess	190
	3.7.3	Benzoin	191
	5.1.5	Bellevill	1/1

Contents xiii

xiv Contents

	3.7.4	1-Phenyl-(1S) ethan-1-ol from acetophenone	193
	3.7.5	Deoximation of oximes by ultrasonically	
		stimulated Bakers yeast	194
3.8	Sonica	tion reactions	195
	3.8.1	Butyraldehyde	195
	3.8.2	2-Chloro-N-aryl anthranilic acid	196
3.9	Esterifi	ication	196
	3.9.1	Benzocaine (Ethyl p-aminobenzoate)	196
	3.9.2	Isopentyl acetate (Banana oil)	198
	3.9.3	Methyl salicylate (oil of wintergreen)	198
3.10) Enami	ne reaction	200
	3.10.1	2–Acetyl cyclohexanone	200
3.11	Reaction	ons in ionic liquids	201
	3.11.1	1-Acetylnaphthalene	201
	3.11.2	Ethyl 4-methyl-3-cyclohexene carboxylate	202
Indi	οr		205

1

Green Chemistry

INTRODUCTION

Green chemistry is defined as environmentally benign chemical synthesis. It focusses on a process (whether carried out in industry or chemical laboratory) that reduce the use and generation of hazardous substances or byproducts. Strict laws have been passed by various governments particularly in advanced countries like USA to strictly follow the procedures for various synthesis so as to reduce or eliminate the products (or by products) that are responsible for the pollution of the environment. The chemists all over the globe are motivated not only for the environmentally benign synthesis of new products but also to develop green synthesis for existing chemicals. This has been possible by the replacement of the organic solvents, which are hazardous by water or eliminate the use of solvent altogether.

There is absolutely no doubt that green chemistry has brought about medical revolution (e.g., synthesis of drugs etc.). The world's food supply has increased many fold due to the discovery of hybrid varieties, improved methods of farming, better seeds and use of agro chemicals like fertilizers, insecticides and herbicides etc. Also the quality of life has improved due to the discovery of dyes, plastics, cosmetics and other materials. All these developments increased the average life expectancy from 47 years in 1900 to 75 years in 1990's. However, the ill effects of all the development became pronounced. The most important effect is the release of harzardous by products of chemical industries and the release of agro chemicals in the atmosphere, land and water bodies; all these are responsible for polluting the environment including atmosphere, land and water bodies. Due to all these green chemistry assumed special importance.

1.1 THE NEED OF GREEN CHEMISTRY

It has already been stated that various scientific developments in the 20th century brought about various benefits to the mankind, but all this was responsible for a number of environmental problems at the local and global levels. It is, of course, important to formulate guidelines and pass strict rules for the practicising chemists. But the most important is to bring about changes at the grass root level. And this can be achieved by bringing about necessary changes in the chemistry curriculum

in the colleges and the universities and also in the secondary schools. A concerted and pervasive effort is needed to reach the widest audience. Bringing green chemistry to the class room and the laboratory will have the desired effect in educating the students at various levels about green chemistry.

1.2 PRINCIPLES OF GREEN CHEMISTRY

Green chemistry deals with environmentally benign chemical synthesis with a view to devise pathways for the prevention of pollution. According to Paul T. Anastas, the following twelve basic principles of green chemistry have been formulated.

1. It is better to prevent waste than to treat or clean up waste after it is formed.

It is best to carry out a synthesis by following a pathway so that formation of waste (by products) is minimum or absent. It must be kept in mind that in most of the cases, the cost involved in the treatment and disposal of waste adds to the overall cost of production. The unreacted starting materials (which may or may not be hazardous) form part of the waste. The basic principle 'prevention is better than cure' should be followed. The waste if discharged in the atmosphere, sea or land not only causes pollution but also requires expenditure for cleaning up.

2. Synthetic materials should be designed to maximize the incorporation of all materials used in the process into the final product.

It has so far been believed that if the yield in a particular reaction is about 90%, it is considered to be good. The percentage yield is calculated by

% yield =
$$\frac{\text{Actual yield of the product}}{\text{Theoretical yield of the product}} \times 100$$

The above calculation implies that if one mole of a starting material produces one mole of the product, the yield is 100%. However, such a synthesis may generate significant amount of waste or by products which is not visible in the above calculation. Such a synthesis, even though is 100% (by above calculation) is not considered to be a green synthesis. For example, reactions like Grignard reactions and Wittig reaction may proceed with 100% yield but they do not take into account the large amount of by products obtained.

A reaction or a synthesis is considered to be green if there is maximum incorporation of the starting materials or reagents in the final product. One should take into account the percentage atom utilization, which is determined by the following equation

% atom utilization =
$$\frac{\text{MWof desired product}}{\text{MWof desired product} + \text{MWof waste products}} \times 100$$

This concept of atom economy was developed by B.M. Trost² in a consideration of how much of the reactants end up in the final product.

The same concept was also determined by R.A. Sheldon³ as given below.

% atom economy =
$$\frac{\text{FW of atoms utilized}}{\text{FW of the reactants used in the reaction}} \times 100$$

The most common reaction we generally come across in organic synthesis are rearrangement, addition, substitution and elimination reactions. Let us find out which of the above reactions is more atom economical.

(a) Rearrangement Reactions

These reactions involve rearrangement of atoms that make up a molecule. For example, allyl phenyl ether on heating at 200°C gives oallyl phenol (Scheme-1).

$$\begin{array}{ccc}
OH \\
\hline
200^{\circ}C \\
\hline
OH \\
o- allyl phenol \\
ether
\end{array}$$
(Scheme-1)

The rearrangement reaction (in fact all rearrangement reactions) is 100% atom economical reaction, since all the reactants are incorporated into the product.

(b) Addition Reactions

Consider the bromination of propene (Scheme-2).

$$H_3C CH = CH_2 + Br_2 \xrightarrow{CCl_4} H_3C CH Br CH_2Br$$
Propene 1,2-dibromopropane (Scheme-2)

Here also all elements of the reactants (propene and bromine) are incorporated into the final product (1,2-dibromopropane). So this reaction is also 100% atom economical reaction.

In a similar way cycloaddition reaction of butadiene and ethene (Scheme-3) and addition of hydrogen to an olefin (Scheme-4) is 100% atom economical reaction.

$$H_3C$$
— CH = $CH_2 + H_2 \xrightarrow{Ni} H_3C$ — CH_2 — CH_3

Propene (Scheme-4)

(c) Substitution Reactions

In substitution reactions, one atom (or group of atoms) is replaced by another atom (or group of atoms). The atom or group that is replaced is not utilised in the final product. So the substitution reactions are less atom economical than rearrangement or addition reactions.

Let us consider the reaction of ethyl propionate with methyl amine (Scheme-5).

$$\begin{array}{c} O \\ \parallel \\ CH_3CH_2CC_2H_5 \\ Ethyl \ propionate \end{array} \begin{array}{c} O \\ \parallel \\ CH_3CH_2CNHCH_3 \\ Methyl \ amine \end{array} \begin{array}{c} CH_3CH_2CNHCH_3 \\ N-Methyl \ propamide \end{array} \begin{array}{c} CH_3CH_2OH \\ Ethyl \ alcohol \\ \end{array}$$

In the above reaction, the leaving group (OC₂H₅) is not incorporated in the formed amide and also, one hydrogen atom of the amine is not utilized. The remaining atoms of the reactants are incorporated into the final product.

The total of atomic weights of the atoms in reactants that are utilized is 87.106 g/mole, while the total molecular weight including the reagent used is 133.189 g/mole. Thus a molecular weight of 46.069 g/mole remains unutilized in the reaction.

	Reactants		Utilized		Unutilized	
	Formula	FW	Formula	FW	Formula	FW
	$C_5H_{10}O_2$	102.132	C ₃ H ₅ O	57.057	C ₂ H ₅ O	45.061
	CH ₅ N	31.057	CH_4N	30.049	Н	1.008
Total	$C_6H_{15}NO_2$	133.189	C ₄ H ₉ NO	87.106	C ₂ H ₅ OH	46.069

Therefore, the atom economy (%) =
$$\frac{87 \cdot 106}{133 \cdot 189} \times 100 = 65.40\%$$

(d) Elimination Reactions

In an elimination reaction, two atoms or groups of atoms are lost from the reactant to form a π bond. Consider the following Hofmann elimination reaction (Scheme-6).

$$\begin{array}{c} CH_3 \\ CH_2 - N - CH_3 \\ CH_3 \end{array} \quad OH^- \xrightarrow{\Delta} H_3C - CH + \\ CH_2 \quad H_3C \end{array}$$

The above elimination reaction is not very atom economical. The percentage atom economy is 35.30% and is the least atom economical of all the above reactions.

Consider another elimination reaction involving dehydrohalogenation of 2-bromo-2-methylpropane with base to give 2-methylpropene (Scheme-7).

2-Bromo-2-methylpropane

2-Methyl propene

(Scheme-7)

The above dehydrohalogenation reaction (an elimination reaction) is also not very atom economical. The percentage atom economy is 27% which is even less than the Hofmann elimination reaction.

3. Wherever practicable, synthetic methodologies should be designed to use and generate substances that possess little or no toxicity to human health and the environment.

One of the most important principle of green chemistry is to prevent or at least minimize the formation of hazardous products which may be toxic and or environmentally harmful. In case hazardous products are formed, their effects on the workers must be minimized by the use of protective clothing, respirator etc. This, of course, will add to the cost of production. At times, it is found that the controls may fail and there may be more risk involved. Green chemistry, in fact, offers a scientific option to deal with such situations.

4. Chemical products should be designed to preserve efficacy of function while reducing toxicity.

It is extremely important that the chemicals synthesised or developed (e.g., dyes, paints, cosmetics, pharmaceuticals etc.) should be safe to use. A typical example of an unsafe drug is thalidomide (introduced in 1961) for reducing the effects of nausea and vomitting during pregnancy (morning sickness). The children born to women taking thalidomide suffered birth defects. Subsequently, the use of thalidomide was banned, the drug withdrawn and strict regulations passed for testing all new drugs.

With the advancement of technology, the designing and production of safer chemicals has become possible. In fact, it is possible to manipulate the molecular structure to achieve this goal.

5. The use of auxiliary substances (solvents, separation agents, etc.) should be made unnecessary whenever possible and, when used, innocuous.

A number of solvents like methylene chloride, chloroform, perchloroethylene, carbon tetrachloride, benzene and other aromatic hydrocarbons have been used (in a large number of reactions) due to their excellent solvent properties. However, the halogenated solvents (mentioned above) have been identified as suspected human carcinogens. Also, benzene and other aromatic hydrocarbons are believed to promote cancer in humans and other animals.