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GRAPH STRUCTURE AND
MONADIC SECOND-ORDER LOGIC

A Language-Theoretic Approach

The study of graph structure has advanced significantly in recent years: finite graphs
can now be described algebraically, enabling them to be constructed out of more basic
elements. One can obtain algebraic characterizations of tree-width and clique-width, two
graph complexity measures that are important for the construction of polynomial-time
graph algorithms. Separately the properties of graphs can be studied in a logical language
called monadic second-order logic. In this book, these two features of graph structure are
brought together for the first time in a presentation that unifies and synthesizes research
over the last 25 years. The authors not only provide a thorough description of the theory,
but also detail its applications, on the one hand to the construction of graph algorithms, and
on the other to the extension of formal language theory to finite graphs. This extension
combines algebraic notions (equational and recognizable sets) and logical ones (graph
transformations specified by logical formulas). Applications of these tools to languages
of words and terms are also presented.

Consequently the book will be of interest to graduate students and researchers in graph
theory, finite model theory, formal language theory and complexity theory.

Encyclopedia of Mathematics and Its Applications

This series is devoted to significant topics or themes that have wide application in math-
ematics or mathematical science and for which a detailed development of the abstract
theory is less important than a thorough and concrete exploration of the implications and
applications.

Books in the Encyclopedia of Mathematics and Its Applications cover their subjects
comprehensively. Less important results may be summarized as exercises at the ends of
chapters. For technicalities, readers can be referred to the bibliography, which is expected
to be comprehensive. As a result, volumes are encyclopedic references or manageable
guides to major subjects.
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Foreword
by Maurice Nivat

The genesis of this great and beautiful book spans more than 20 years. It collects and
unifies many theoretical notions and results published by Bruno Courcelle and others
in a large number of articles.

The concept of a language to communicate with a computer, a machine or any
kind of device performing operations is at the heart of Computer Science, a field
that has truly thrived with the emergence of symbolic programming languages in the
1960s. Formalizing the algorithms that enable computers to calculate an intended
result, to control a machine or a robot, to search and find the relevant information in
response to a query, and even to imitate the human brain in actions such as measuring
risk and making decisions, is the main activity of computer scientists as well as of
ordinary computer users.

The languages designed for these tasks, which number by thousands, are defined
in the first place by syntactic rules that construct sets of words and to which are
then attached meanings. This understanding of a language was first conceived by
structural linguists, in particular Nicolai Troubetskoi, Roman Jacobson and Noam
Chomsky, and has transformed Linguistics, the study of natural languages, by giving
it new directions. It has also been extended to programming languages, which are
artificial languages, and to the Lambda Calculus, one of many languages devised by
logicians, among whom we can cite Kurt Godel, Alonzo Church and Alan Turing,
who aspired to standardize mathematical notation and to mechanize proofs. This same
idea has inspired all research on computation theory and programming. Thanks to the
results of this research, planes can fly with continuously monitored flight parameters,
providing us with unprecedented reliability: this is so because millions of lines of
code have been formally proved to be correct.

Words are strings of symbols taken from finite alphabets. They constitute the basic
elements. They can represent all the information one might wish to capture, use,
process, disseminate or share in a world that is fast becoming more and more “digital,”
as Gérard Berry emphasized recently in his lectures at the Collége de France.

Most information, though represented always by words, is nevertheless structured
hierarchically and can thus be presented in a natural way as a tree or as a graph. Most
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of the countless electronic chips that make up computers but are also used in an
ever-growing number of other machines as well, from washing machines to nuclear
power plants, calculate on graphs: by connecting vertices, their edges can represent
virtually any relationship of subordination, analogy, neighborhood or causality. From
the early 1960s, the algorithms for graphs (and for trees, which are particular graphs)
have been developed swiftly, and most of the current computing applications are based
on these algorithms. Thousands of them have been designed by numerous researchers
and engineers, and they fuel a burgeoning literature.

It was around 1980 that Bruno Courcelle, a former student of the prestigious Ecole
Normale Supérieure (Rue d’Ulm in Paris), a logician by training, and a young but
already established researcher, tackled a seemingly impossible task: to build a theory
of tree languages that would classify all of these algorithms and present them in a
unified and rational way. Bruno Courcelle is not a “problem solver” who happened to
discover more-or-less elegant and clever answers to questions; he likes well-founded
and harmonious theories, and is always looking for unifying concepts. Armed with a
knowledge of logic and with a familiarity with Fundamental Computer Science, and
in particular with Formal Language Theory which he gained during his years as a
researcher at INRIA (Institut National de Recherche en Informatique et Automatique)
while preparing his thesis, Bruno Courcelle got down to work with perseverance and
determination.

Upon his arrival at Bordeaux-1 University in 1979 (LaBRI, the Laboratoire Borde-
lais de Recherche en Informatique, was created in 1988), Bruno Courcelle found an
excellent work environment. The concept of attribute grammar, which is important in
compilation, provided the model that he has used to develop an algebraic approach to
graph grammars and a logical approach to the proof of properties of the graphs they
generate. The first published work he devoted to attribute grammars is the source of
the theory presented here, based on Logic and Universal Algebra.

The impact of his work surpassed all expectations, even taking into consideration
the remarkable qualities of method and rigor that characterize Bruno Courcelle. For
when the first elements of his theory began to spread among those who work on design-
ing and improving graph algorithms, these researchers realized that Bruno Courcelle
had provided a convenient formal framework in which many problems could be
solved. In particular, Bruno’s theory brought a logical lightening to the profound
works of Paul Seymour and his collaborators on graph minors. Other researchers
have been inspired by his theory to study new problems and invent new algorithms.
A daunting theory that was originally seen as arcane and abstract proved to be rich
and fertile. In 2004, Bruno Courcelle was awarded by INIST (an institute depending
on the Centre National pour la Recherche Scientifique) and the ISI-Web of Science
(Thomson-Reuters) the prize of the “most cited researcher in Computer Science in
France.”

I'am not going to analyze his work further; in any case Chapter 1 is a long overview
that is perfectly readable, even by those who are well versed neither in algebra nor in
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mathematical logic. I would rather emphasize that the work of a computer scientist,
as of any scientist, can be very diverse. The quest for new results is one endeavor,
but bringing up to date the underlying structures, unifying concepts and simplifying
the presentation of results, is quite another. The rapid, sometimes frantic, growth of
publications in Computer Science has led most researchers to choose the former in
pursuit of better results and more efficient algorithms. It gives me great pleasure to
preface a work that is of the opposite nature: a long book produced by a comprehensive
study, which leads to a very interesting result: the formation of a theory that brings
order, that explains and simplifies a vast collection of results obtained by others and,
at the same time, that proposes methods, yields results and raises new questions.

While still a student I was very struck when 1 first read André Lichnérowicz’s
book on linear algebra. I had already taken courses in linear algebra which, I confess,
were not very helpful, and suddenly this book made everything clear. The mysterious
operations which we were taught to perform on the square tables called “determinants”
started making sense; the concepts of both vector space and the dimension of a vector
subspace finally allowed me to understand what it meant to agonize over a determinant
and, moreover, why this notion is important. Lichnérowicz’s book is a classic that has
enabled generations of students to learn linear algebra with ease, and it has become a
mathematical tool widely used by engineers and technicians who are not professional
mathematicians. I believe that this book will get the same reputation, quickly become
a classic and provide an easy access to the burgeoning world of graph algorithms and
its numerous applications throughout the sciences and beyond.

The comments above were written two years ago, when Bruno Courcelle’s book
was only 500 pages long, and I cannot change what I wrote then: it is a great and
beautiful book that is going to take its place very soon on the library shelves of all the
departments of Computer Science around the world. But now the book is 700 pages
long and has two authors, Bruno and Joost Engelfriet. What happened is that Bruno
sent the previous version to Joost to read and suggest corrections and improvements.
Joost is a very old acquaintance of both Bruno and myself, and we have always known
him as one of the most knowledgeable researchers in the field of grammars, automata
and transducers on words and trees. And Joost had so many things to suggest that it
is another book that I present today: thicker, with new results and a number of proofs
that have been replaced by simpler and more elegant ones. Obviously the cooperation
between Bruno and Joost was a very fruitful one indeed.

Knowing Joost as I do, this is not a surprise: when I asked him to referee papers
submitted to the journal Theoretical Computer Science, in most cases Joost’s report
was longer and sometimes richer than the refereed article. His comments always led
to a major improvement of the original text. Clearly Bruno’s manuscript inspired
Joost. And we all have to be grateful to him for, as usual, his comments and the work
he did on the manuscript resulted in a major improvement and a sizable enlargement.

Thus today I am very happy to thank the two authors of this beautiful book, which I
consider to be a wonderful source of knowledge in Computer Science. Itis a theoretical
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book, and for that reason some people may find it hard to read, but reading it is worth
the pain, because the formalism introduced and the methods presented have already
led to many new algorithms on graphs (as the number of citations of Bruno’s published
papers show) and they will lead to many others in the future. To anyone interested in
graph algorithms I can only recommend that they read this book first.

For indeed this book lies at the very heart of Computer Science, which is the
expressiveness of the languages used to represent and manipulate information and
information structures, graphs being among the most widely used information struc-
tures. Progress in the efficiency, liability and simplicity of algorithms comes mainly
from the use of better representations, better structures and a better understanding of
the different ways in which one can describe sets of data and express their properties.
This book provides a huge number of conceptual tools to design and study graph
algorithms that no one should ignore.

In the name of'the young but fast-growing science that in French we call /nformatics,
in the name of all future researchers in this field, I just say to Bruno and Joost: Thanks,
you have done a good job!
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Introduction

This book contributes to several fields of Fundamental Computer Science. It extends
to finite graphs several central concepts and results of Formal Language Theory
and it establishes their relationship to results about Fixed-Parameter Tractability.
These developments and results have applications in Structural Graph Theory. They
make an essential use of logic for expressing graph problems in a formal way and
for specifying graph classes and graph transformations. We will start by giving the
historical background to these contributions.

Formal Language Theory

This theory has been developed with different motivations. Linguistics and compila-
tion have been among the first ones, around 1960. In view of the applications to these
fields, different types of grammars, automata and transducers have been defined to
specify formal languages, i.e., sets of words, and transformations of words called
transductions, in finitary ways. The formalization of the semantics of sequential and
parallel programming languages, that uses respectively program schemes and traces,'
the modeling of biological development and yet other applications have motivated the
study of new objects, in particular of sets of terms.? These objects and their specifying
devices have since been investigated from a mathematical point of view, indepen-
dently of immediate applications. However, all these investigations have been guided
by three main types of questions: comparison of descriptive power, closure properties
(with effective constructions in case of positive answers) and decidability problems.

A context-free grammar generates words, hence specifies a formal language. How-
ever, each generated word has a derivation tree that represents its structure relative to
the considered grammar. Such a tree, which can also be viewed as a term, is usually

Traces are equivalence classes of words for congruences generated by commutations of letters; see
the book [*DiekRoz]. For program schemes, see [*Cou90a]. The list of references is divided into two
parts. The first part lists books, book chapters and survey articles: the * in, e.g., [*DiekRoz] indicates a
reference of this kind. The second part lists research articles and dissertations.

In Semantics, one is also interested in infinite words, traces and terms. In this book these will not be
considered.
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the support of further computation, typically a translation into a word of another lan-
guage (this is the case in linguistics and in compilation). Hence, even for its initial
applications, Formal Language Theory has had to deal with trees as well as with
words. In Semantics, terms are even more important than words. Thus, sets of terms,
usually called tree languages3, and transductions of terms, called tree transductions,
have become central notions in Formal Language Theory.

Together with context-free grammars, finite (also called finite-state) automata are
among the basic notions of Language Theory, in particular for their applications to
lexical analysis and pattern matching. They were also used early on (around 1960) for
building algorithms to check the validity of certain logical formulas, especially those
of monadic second-order logic, in certain relational structures. On the other hand,
monadic second-order logic can be used to specify and to classify sets of words and
terms.* There are deep relationships between monadic second-order formulas and
finite automata that recognize words and terms (see [*Tho97a]). The fundamental
result is that every language that is specified by a sentence of monadic second-order
logic (expressing a property of words) can be recognized by a finite automaton, and
vice-versa. Moreover, the finite automaton can be constructed effectively from the
sentence. This means that monadic second-order logic can be viewed as a high-level
specification language that can be compiled into “machine code”: a finite automaton
that recognizes the words that satisfy the specification. The same result holds for
terms, with respect to finite automata on trees. As a consequence of this fundamental
relationship, monadic second-order logic is now one of the basic tools used in Formal
Language Theory and its applications, in addition to context-free grammars, finite
automata and finite transducers (which are finite automata with output).

The extension of the basic concepts of Formal Language Theory to graphs is a
natural step because graphs generalize trees. However, graphs have already been
present from the beginnings in several of its fields. In compilation, one uses attribute
grammars that are context-free grammars equipped with semantic rules ([* AhoLSU],
[*Cre]). These rules associate graphs (called dependency graphs) with derivation
trees. An attribute grammar is actually the paradigmatic example of a context-free
graph grammar (based on hyperedge replacement rewriting rules, [*DreKH]). In
the semantics of parallelism, traces are canonically represented by graphs, and an
important concern is to specify them by finite automata ([*DiekRoz]).

One starting point of the research presented in this book has been the develop-
ment of a robust theory of context-free graph grammars, of recognizability of sets of
graphs (to be short, an algebraic formulation of finite automata) and of graph trans-
ductions. In order to use the theory of context-free grammars and recognizability in
arbitrary algebras initiated by Mezei and Wright in [MezWri], we choose appropriate

3 In addition to being words, terms have canonical representations as labeled, rooted and ordered trees.
They are thus called “trees” but this terminology is inadequate.

4 This logical language and the related one called u-calculus ([*AmNiw]) are also convenient for
expressing properties of programs.
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(and natural) operations on graphs. Thus, graphs become the value of terms that are
built with these (infinitely many) operations. Roughly speaking, a context-free graph
grammar is a finite set of rules of the form 49 — f(41,...,4,), n > 0, where each
A; is a nonterminal of the grammar and / is one of the chosen graph operations. The
rule means that if the graphs Gy, ..., G, are generated by respectively 41,...,4,, then
Ao can generate the graph f(Gi,...,G,). Such grammars have useful applications
to Graph Theory: they can be used to describe many graph classes in uniform ways
and to prove by inductive arguments certain properties of their graphs. Still roughly
speaking, a set of graphs is recognizable if there is a finite automaton that recognizes
all the terms that evaluate to a graph in the set. Thus, the automaton does not work
directly on the given graph, but rather on any term that represents that graph. In a
similar way one can define graph transductions through the use of tree transducers.
Note that, to describe a set of graphs or a graph transduction in a finitary way, one can
necessarily use only finitely many graph operations. As we will see, that is a rather
severe, but natural restriction.

Our main goal will be to show that the fundamental use of monadic second-order
logic as a high-level specification language carries over to graphs, not only for the
specification of recognizable sets of graphs, but also for context-free sets of graphs
and for certain types of graph transductions. This gives a new dimension to the above-
mentioned fundamental result for words and terms, because the properties of graphs
that can be specified in monadic second-order logic are more varied and useful than
those of words and terms.

We will specify a set of graphs by a monadic second-order sentence, and a graph
transduction by a tuple of monadic second-order formulas that define an “interpreta-
tion” of the output graph in the input graph. From such a specification we will show
how one can construct a finite automaton on terms, or a tree transducer in the second
case, that is related to the specification as explained above. Note that the logic “acts”
directly on the graphs, whereas the automata and transducers work on the terms that
denote these graphs. Thus, monadic second-order logic can be viewed as playing the
role of “finite automata on graphs” and “finite transducers of graphs” in our Formal
Language Theory for Graphs.

Graph algorithms

The above-mentioned developments have important applications for the construction
of polynomial-time algorithms on graphs. In his 16th NP-completeness column, pub-
lished in 1985 [John], Johnson reviews a number of NP-complete graph problems that
become polynomial-time solvable if their inputs are restricted to particular classes of
graphs such as those of trees, of series-parallel graphs, of planar graphs to name a
few. For many of these classes, in particular for trees, almost trees (with parameter
k), partial k-trees, series-parallel graphs, outerplanar graphs and cographs, the
efficient algorithms take advantage of certain hierarchical structures of the input
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graphs. Because of these structures, these graphs are somehow close to trees.’> The
notion of a partial k-tree has emerged as a powerful one subsuming many other types
of “tree-like graphs.” (The cographs have a canonical hierarchical structure but they
are not included in the class of partial k-trees for any fixed k.) Many articles have
produced polynomial-time algorithms for NP-complete problems restricted to partial
k-trees. In 1994, Hedetniemi has compiled a list of 238 references [*Hed] on partial
k-trees and algorithms concerning them. The notion of a partial k-tree has also been
used with a different terminology (tree-width, tree-decomposition) by Robertson and
Seymour in their study of the structure of graph classes that exclude fixed graphs as
minors. They formulate this notion in terms of particular decompositions of graphs,
called tree-decompositions, that are at the basis of the construction of polynomial-
time algorithms. Each tree-decomposition has a width, and a graph is a partial k-tree
if and only if it has tree-width at most &, which means that it has a tree-decomposition
of width at most &.

The recent theory of Fixed-Parameter Tractability (the founding book by Downey
and Fellows [*DowFel] was published in 1999) now gives a conceptual framework to
most of these results. The notion of a fixed-parameter tractable algorithm specifies
how the multiplicative constant factor of the time-complexity of a polynomial-time
algorithm depends on certain parts of the data. It happens that for most of the
graph algorithms based on tree-decompositions, the exponent of the polynomial is 1:
these algorithms are linear-time in the size of the input graphs, with multiplicative
“constant” factors that depend exponentially (or more) on the widths of the input
tree-decompositions.

The explanation for this fact is one of the main goals of this book. We will show
that, for a certain natural choice of graph operations, tree-decompositions correspond
to terms, and tree-decompositions of width at most & correspond to terms that are built
from a finite subset of those operations. A general algorithmic result that encompasses
many of the above-mentioned results, follows from the fundamental relationship
between monadic second-order logic and finite automata discussed before: if the
considered problem is specified by a monadic second-order sentence (and this is
the case for many NP-complete graph problems not using numerical values in their
inputs), then a finite automaton on the terms that encode the tree-decompositions of
width at most k& can be constructed (for each k) to give the answer to the considered
question (for example, Is the given graph 3-colorable?) where the input graph is
given by a tree-decomposition (or a term encoding it). The linearity result follows
because finite automata can be implemented so as to work in linear time (and because
a tree-decomposition of a graph can be found in linear time).

5 These classes can actually be generated by certain context-free graph grammars and the corresponding
hierarchical structures of the generated graphs are represented by their derivation trees. There is thus
a close relationship between the algorithmic issues and the extensions of language theoretic concepts
discussed above.
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We will extend the case of tree-width bounded graphs (already discussed in
[*DowFel]) to another type of graph decompositions, based on another natural choice
of graph operations. This leads to the notion of clique-width of a graph. Clique-width
is more powerful than tree-width in the sense that every set of graphs of bounded
tree-width has bounded clique-width but not vice-versa, an example being the set of
cographs. On the other hand, in the above general result, the monadic second-order
sentences must be restricted to use quantifications on sets of vertices (instead of both
vertices and edges), so fewer graph problems can be specified. The algorithms are
cubic-time instead of linear-time because, for these graph operations, cubic time is
needed to find a term for a given graph.

The theory that will be exposed in the nine chapters of this book has arisen from
the confluence of the two main research directions presented above. The remainder
of this introduction will present in a more detailed way, but still informally, the main
concepts and results.

The role of logic

We will study and compare finitary descriptions of sets of finite graphs by using con-
cepts from Logic, Universal Algebra and Formal Language Theory. We first explain
the role of Logic. A graph® can be considered as a logical structure (also called
relational structure) whose domain (also called its universe) consists of the vertices,
and that is equipped with a binary relation that represents adjacency. Graph proper-
ties can thus be expressed by logical formulas of different languages and classified
accordingly.

First-order formulas are rather weak in this respect because they can only express
local properties such as that a graph has maximum degree or diameter bounded by
a fixed integer. Most properties of interest in Graph Theory can be expressed by
second-order formulas: these formulas can use quantifications on relations of arbitrary
arity. Unfortunately, little can be obtained from the expression of a graph property
in second-order logic. Our favorite logical language will be its restriction called
monadic second-order logic. Its formulas are the second-order formulas that only use
quantifications on unary relations, i.e., on sets. They can express many useful graph
properties like connectivity, p-colorability (for fixed p) and minor inclusion, whence
planarity. Such properties are said to be monadic second-order expressible, and the
corresponding sets of graphs are monadic second-order definable.

These logical expressions have interesting algorithmic consequences as explained
above, but only for graphs that are somehow “tree-like” (because 3-colorability
is NP-complete and expressible by a monadic second-order sentence). Monadic
second-order sentences are also used in Formal Language Theory to specify lan-
guages, i.e., sets of words or terms. The fundamental result establishes that monadic
second-order sentences and finite automata have the same descriptive power. But

6 In order to simplify the discussion, we only discuss simple graphs, i.e., graphs without parallel edges.



