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Introduction

The physiological behaviors of cells (growth and division, differentiation, movement,
death, etc.) are controlled by complex networks of interacting genes and proteins, and
a fundamental goal of computational cell biology is to develop dynamical models of
these regulatory networks that are realistic, accurate and predictive. Historically, these
models have divided along two basic lines: deterministic or stochastic, and continu-
ous or discrete, with scattered efforts to develop hybrid approaches that bridge these
divides.

In chapter 1 of this volume, using the cell cycle control system in eukaryotes as an
example, Singhania and colleagues propose a hybrid approach that combines a con-
tinuous representation of slowly changing protein concentrations with a discrete repre-
sentation of components that switch rapidly between “on” and “oft” states, combining
the deterministic causality of network interactions with the stochastic uncertainty of
random events. The hybrid approach can be easily tailored to the available knowledge
of control systems, and it provides both qualitative and quantitative results that can be
compared to experimental data to test the accuracy and predictive power of the model.

In chapter 2, Head, Briels, and Gompper present the results of numerical simula-
tions of a discrete filament-motor protein model confined to a pressurized cylindri-
cal box. Stable spindles, nematic configurations, asters, and high-density semi-asters
spontaneously emerge. State diagrams are presented delineating each stationary state
as the pressure, motor speed and motor density are varied. The authors further high-
light a parameter regime where vortices form exhibiting collective rotation of all fila-
ments, but have a finite lifetime before contracting to a semi-aster. They demonstrate
that discrete filament-motor protein models provide new insights into the stationary
and dynamical behavior of active gels and subcellular structures, because many phe-
nomena occur on the length-scale of single filaments.

In yet another scenario, the assembly of the Drosophila embryo mitotic spindle
during prophase depends upon a balance of outward forces generated by cortical dy-
nein and inward forces generated by kinesin-14 and nuclear elasticity. Myosin II is
known to contribute to the dynamics of the cell cortex but how this influences the
prophase force-balance is unclear. Sommi and her colleagues investigate this ques-
tion in chapter 3; they did so by injecting the myosin II inhibitor, Y27632, into early
Drosophila embryos. They observed a significant increase in both the area of the dense
cortical actin caps and in the spacing of the spindle poles. Their results suggest that
two complementary outward forces are exerted on the prophase spindle by the over-
lying cortex. Specifically, dynein localized on the mechanically firm actin caps and
the actomyosin-driven contraction of the deformable soft patches of the actin cortex,
cooperate to pull astral microtubules outward. Thus, myosin II controls the size and
dynamic properties of the actin-based cortex to influence the spacing of the poles of
the underlying spindle during prophase.
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Reliable chromosome segregation is crucial to all dividing cells. In some bacteria,
segregation has been found to occur in a rather counterintuitive way: the chromosome
attaches to a filament bundle and erodes it by causing depolymerization of the fila-
ments. Moreover, unlike eukaryotic cells, bacteria do not use molecular motors and/or
macromolecular tethers to position their chromosomes. This raises the general ques-
tion of how depolymerizing filaments alone can continuously and robustly pull cargo
as the filaments themselves are falling apart. In chapter 4, Banigan and his colleagues
introduce the first quantitative physical model for depolymerization-driven translo-
cation in a many-filament system. Their simulations of this model suggest a novel
underlying mechanism for robust translocation, namely self-diffusiophoresis, motion
of an object in a self-generated concentration gradient in a viscous environment. In
this case, the cargo generates and sustains a concentration gradient of filaments by
inducing them to depolymerize. The authors demonstrate that their model agrees well
with existing experimental observations such as segregation failure, filament-length-
dependent translocation velocity, and chromosomal compaction. In addition, they
make several predictions—including predictions for the specific modes by which the
chromosome binds to the filament structure and triggers its disassembly—that can be
tested experimentally.

Next, in chapter 5, Zumdieck and his coauthors present a physical analysis of the
dynamics and mechanics of contractile actin rings. In particular, they analyze the dy-
namics of ring contraction during cytokinesis in the Caenorhabditis elegans embryo.
They present a general analysis of force balances and material exchange and estimate
the relevant parameter values. The authors show that on a microscopic level contrac-
tile stresses can result from both the action of motor proteins, which cross-link fila-
ments, and from the polymerization and depolymerization of filaments in the presence
of end-tracking cross-linkers.

In chapter 6 we turn our attention to cells that exhibit propagating membrane waves
which involve the actin cytoskeleton. One type of such membranal waves are Circular
Dorsal Ruffles (CDR), which are related to endocytosis and receptor internalization.
Experimentally, CDRs have been associated with membrane bound activators of actin
polymerization of concave shape. Peleg and colleagues present experimental evidence
for the localization of convex membrane proteins in these structures, and their insensi-
tivity to inhibition of myosin II contractility in immortalized mouse embryo fibroblasts
cell cultures. These observations lead the authors to propose a theoretical model that
explains the formation of these waves due to the interplay between complexes that
contain activators of actin polymerization and membrane-bound curved proteins of
both types of curvature (concave and convex). Their model predicts that the activity
of both types of curved proteins is essential for sustaining propagating waves, which
are abolished when one type of curved activator is removed. Within this model waves
are initiated when the level of actin polymerization induced by the curved activators
is higher than some threshold value, which allows the cell to control CDR formation.
The authors demonstrate that the model can explain many features of CDRs, and give
several testable predictions. This chapter demonstrates the importance of curved mem-
brane proteins in organizing the actin cytoskeleton and cell shape.
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Chapter 7 deals with actin waves that are spontaneously generated on the planar,
substrate-attached surface of Dictyostelium cells. Gerisch reveals that the waves have
the following characteristics:

1. They are circular structures of varying shape, capable of changing the direc-
tion of propagation.

The waves propagate by treadmilling with a recovery of actin incorporation
after photobleaching of less than 10 seconds.
The waves are associated with actin-binding proteins in an ordered 3-dimen-
sional organization: with myosin-IB at the front and close to the membrane,
the Arp2/3 complex throughout the wave, and coronin at the cytoplasmic face
and back of the wave. Coronin is a marker of disassembling actin structures.
4. The waves separate two areas of the cell cortex that differ in actin structure
and phosphoinositide composition of the membrane. The waves arise at the
border of membrane areas rich in phosphatidylinositol (3,4,5) trisphosphate

(PIP3). The inhibition of PIP3 synthesis reversibly inhibits wave formation.
5. The actin wave and PIP3 patterns resemble 2-dimensional projections of

phagocytic cups, suggesting that they are involved in the scanning of surfaces

for particles to be taken up.

o

(0%

Lengths and shapes are approached in different ways in different fields: they serve
as a read-out for classifying genes or proteins in cell biology, whereas they result from
scaling arguments in condensed matter physics. In chapter 8, Riveline proposes a com-
bined approach with examples illustrated for the fission yeast Schizosaccharomyces
pombe.

Cells have highly varied and dynamic shapes, which are determined by internal
forces generated by the cytoskeleton. These forces include protrusive forces due to the
formation of new internal fibers and forces produced due to attachment of the cell to an
external substrate. A longstanding challenge is to explain how the myriad components
of the cytoskeleton self-organize to form the observed shapes of cells. In chapter 9,
Kabaso and coauthors present a theoretical study of the shapes of cells that are driven
only by protrusive forces of two types; one is the force due to polymerization of actin
filaments, which acts as an internal pressure on the membrane, and the second is the
force due to adhesion between the membrane and external substrate. The key property
is that both forces are localized on the cell membrane by protein complexes that have
convex spontaneous curvature. This leads to a positive feedback that destabilizes the
uniform cell shape and induces the spontaneous formation of patterns. The authors
compare the resulting patterns to observed cellular shapes and find good agreement,
which allows them to explain some of the puzzling dependencies of cell shapes on the
properties of the surrounding matrix.

Chapter 10 deals with amoeboid cells, which crawl using pseudopods, convex ex-
tensions of the cell surface. In many laboratory experiments, cells move on a smooth
substrate, but in the wild cells may experience obstacles of other cells or dead mate-
rial, or may even move in liquid. To understand how cells cope with heterogeneous
environments, Van Haastert has investigated the pseudopod life cycle of wild type
and mutant cells moving on a substrate and when suspended in liquid. He shows that
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the same pseudopod cycle can provide three types of movement that he addresses as
walking, gliding and swimming. In walking, the extending pseudopod will adhere
firmly to the substrate, which allows cells to generate forces to bypass obstacles. Mu-
tant cells with compromised adhesion can move much faster than wild type cells on a
smooth substrate (gliding), but cannot move effectively against obstacles that provide
resistance. In a liquid, when swimming, the extending pseudopods convert to side-
bumps that move rapidly to the rear of the cells. Calculations suggest that these bumps
provide sufficient drag force to mediate the observed forward swimming of the cell.

During development, the formation of biological networks (such as organs and
neuronal networks) is controlled by multicellular transportation phenomena based on
cell migration. In multi-cellular systems, cellular locomotion is restricted by physical
interactions with other cells in a crowded space, similar to passengers pushing others
out of their way on a packed train. The motion of individual cells is intrinsically sto-
chastic and may be viewed as a type of random walk. However, this walk takes place
in a noisy environment because the cell interacts with its randomly moving neighbors.
Despite this randomness and complexity, development is highly orchestrated and pre-
cisely regulated, following genetic (and even epigenetic) blueprints. Although indi-
vidual cell migration has long been studied, the manner in which stochasticity affects
multi-cellular transportation within the precisely controlled process of development
remains largely unknown. To explore the general principles underlying multicellular
migration, in chapter 11, the authors focus on the migration of neural crest cells, which
migrate collectively and form streams. Yamoa, Naoki, and Ishii introduce a mechani-
cal model of multi-cellular migration. Simulations based on the model show that the
migration mode depends on the relative strengths of the noise from migratory and
non-migratory cells. Strong noise from migratory cells and weak noise from surround-
ing cells causes “collective migration,” whereas strong noise from non-migratory cells
causes “dispersive migration.” Moreover, the authors’ theoretical analyses reveal that
migratory cells attract each other over long distances, even without direct mechanical
contacts. This effective interaction depends on the stochasticity of the migratory and
non-migratory cells. On the basis of these findings, the authors propose that stochastic
behavior at the single-cell level works effectively and precisely to achieve collective
migration in multi-cellular systems.

The actions of cell adhesion molecules, in particular, cadherins during embryonic
development and morphogenesis more generally, regulate many aspects of cellular
interactions, regulation and signaling. Often, a gradient of cadherin expression levels
drives collective and relative cell motions generating macroscopic cell sorting. Com-
puter simulations of cell sorting have focused on the interactions of cells with only a
few discrete adhesion levels between cells, ignoring biologically observed continuous
variations in expression levels and possible nonlinearities in molecular binding. In the
final chapter, the authors present three models relating the surface density of cadherins
to the net intercellular adhesion and interfacial tension for both discrete and continu-
ous levels of cadherin expression. Zhang and colleagues then use then the Glazier-
Graner-Hogeweg (GGH) model to investigate how variations in the distribution of the
number of cadherins per cell and in the choice of binding model affect cell sorting.
They find that an aggregate with a continuous variation in the level of a single type
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of cadherin molecule sorts more slowly than one with two levels. The rate of sorting
increases strongly with the interfacial tension, which depends both on the maximum
difference in number of cadherins per cell and on the binding model. The authors’ ap-
proach helps connect signaling at the molecular level to tissue-level morphogenesis,
thus adding to our understanding of how biophysics relates to yet another realm of
investigation.

— Pavel Kraikivski, PhD
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1.1 INTRODUCTION

The timing of DNA synthesis, mitosis, and cell division is regulated by a complex
network of biochemical reactions that control the activities of a family of cyclin-de-
pendent kinases. The temporal dynamics of this reaction network is typically modeled
by nonlinear differential equations describing the rates of the component reactions.
This approach provides exquisite details about molecular regulatory processes but is
hampered by the need to estimate realistic values for the many kinetic constants that
determine the reaction rates. It is difficult to estimate these kinetic constants from
available experimental data. To avoid this problem, modelers often resort to ‘quali-
tative’ modeling strategies, such as Boolean switching networks, but these models
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describe only the coarsest features of cell cycle regulation. In this chapter it describes
a hybrid approach that combines the best features of continuous differential equations
and discrete Boolean networks. Cyclin abundances are tracked by piecewise linear dif-
ferential equations for cyclin synthesis and degradation. The cyclin synthesis is regu-
lated by transcription factors whose activities are represented by discrete variables
(0 or 1) and likewise for the activities of the ubiquitin-ligating enzyme complexes
that govern cyclin degradation. The discrete variables change according to a predeter-
mined sequence, with the times between transitions determined in part by cyclin accu-
mulation and degradation and as well by exponentially distributed random variables.
The model is evaluated in terms of flow cytometry measurements of cyclin proteins in
asynchronous populations of human cell lines. The few kinetic constants in the model
are easily estimated from the experimental data. Using this hybrid approach, modelers
can quickly create quantitatively accurate, computational models of protein regulatory
networks in cells.

The physiological behaviors of cells (growth and division, differentiation, move-
ment, death, etc.) are controlled by complex networks of interacting genes and pro-
teins, and a fundamental goal of computational cell biology is to develop dynamical
models of these regulatory networks that are realistic, accurate and predictive. Histori-
cally, these models have divided along two basic lines: deterministic or stochastic, and
continuous or discrete; with scattered efforts to develop hybrid approaches that bridge
these divides. Using the cell cycle control system in eukaryotes as an example, we
propose a hybrid approach that combines a continuous representation of slowly chang-
ing protein concentrations with a discrete representation of components that switch
rapidly between ‘on’ and ‘off” states, and that combines the deterministic causality
of network interactions with the stochastic uncertainty of random events. The hybrid
approach can be easily tailored to the available knowledge of control systems, and it
provides both qualitative and quantitative results that can be compared to experimental
data to test the accuracy and predictive power of the model.

The cell division cycle is the fundamental physiological process by which cells
grow, replicate, and divide into two daughter cells that receive all the information
(genes) and machinery (proteins. organelles, etc.) necessary to repeat the process un-
der suitable conditions [1]. This cycle of growth and division underlies all biological
expansion, development, and reproduction. It is highly regulated to promote genetic
fidelity and meet the demands of an organism for new cells. Altered systems of cell
cycle control are root causes of many severe health problems, such as cancer and birth
defects.

In eukaryotic cells, the processes of DNA replication and nuclear/cell division oc-
cur sequentially in distinct phases (S and M) separated by two gaps (G1 and G2). The
mitosis (M phase) is further subdivided into stagesprophase (chromatin condensation,
spindle formation, and nuclear envelope breakdown), prometaphase (chromosome at-
tachment and congression), metaphase (chromosome residence at the mid-plane of the
spindle), anaphase (sister chromatid separation and movement to opposite poles of the
spindle), telophase (re-formation of the nuclear envelopes), and cytokinesis (cell divi-
sion). The G1 phase is subdivided into uncommitted and committed sub-phases, often
referred to as G1-pm (postmitotic interval) and G1-ps (pre S phase interval), separated
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by the ‘restriction point’ [2]. In this chapter, it is refered as the sub-phases G1-pm and
Gl-ps as ‘Gla’ and ‘G1b’ respectively.

The progression through the correct sequence of cell-cycle events is governed by
a set of cyclin-dependent kinases (Cdk’s), whose activities rise and fall during the
cell cycle as determined by a complex molecular regulatory network. For example,
cyclin synthesis and degradation are controlled, respectively, by transcription factors
and ubiquitin-ligating complexes whose activities are, in turn, regulated by cyclin/Cdk
complexes.

Current models of the Cdk control system can be classified as either continuous or
discrete. Continuous models track the changes of protein concentrations, C (1) for j
=1,2, ..., N, by solving a set of nonlinear ordinary differential equations (ODEs) of
the form:

dc

/ R
J = 3 Vi, (0, C s O )
dt —

where p is the rate of the 7" reaction and v, is the stoichiometric coefficient of species
i in reaction . To each rate term is associated one or more kinetic constants that deter-
mine exactly how fast the reaction proceeds under specific conditions. These kinetic
constants must be estimated from experimental data, and often there is insufficient
kinetic data to determine their values. Nonetheless, continuous models, based on rate
equations, have been used successfully to account for the properties of cell prolifera-
tion in a variety of cell typesyeast [3-5], fruit fly [6], frog egg [7-8], and cultured mam-
malian cells [9-11]. They have also proved successful in predicting novel cell-cycle
characteristics [12-13].

Discrete models, on the contrary, represent the state of each regulatory protein as
B(r)=0or 1 (inactive or active), and the state variables update from one discrete time
step to the next (r =0, 1, 2, ... = ticks of a metronome) according to the rule:

B, (t+1)=1, (B (1).B,(7).... B, (7)) 2)
where ¥ (...) is a Boolean function (i.e., it equates to either 0 or 1) determined by the
topology of the reaction network. For Boolean networks (BNs) there is no notion of
reaction ‘rate’ and, hence, no need to estimate kinetic constants. The BN models of the
Cdk regulatory network have been proposed for yeast cells [14,15] and for mammalian
cells [16]. They have been used to study notions of ‘robustness’ of the cell cycle, but
they have not been compared in detail to quantitative properties of cell cycle progres-
sion, and they have not been used as predictive tools.

In this chapter it is proposed to combine the strengths of both continuous and dis-
crete modeling, while avoiding the weaknesses of each. The ‘hybrid’ model is inspired
by the work of Li et al. [14], who proposed a BN for cell cycle controls. Their model
employs 11 state variables that move around in a space of 2'' =2048 possible states.
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Quite remarkably they found that 1764 of these states converge quickly onto a ‘super
highway” of 13 consecutive states that represent a typical cell cycle trajectory (G1b—
S—G2—M-—G1la). The results of Li et al. indicate that the cell cycle control network
is ‘robustly designed’ in the sense that even quite large perturbations away from the
usual sequence of cell cycle states are quickly restored to the super highway. In the
model of Li et al., Gla is a stable steady state; they do not address the signals that drive
cells past the restriction point (the Gla-to-G1b transition).

Despite their intuitive appeal, Boolean models have severe limitations. First of
all, metronomic time in BN’s is unrelated to clock time in the laboratory, so Boolean
models cannot be compared to even the most basic observations of time spent by cells
in the four phases of the division cycle [1]. Also, these models do not incorporate cell
size, so they cannot address the evident importance of cell growth in driving events of
the cell cycle [17-19]. Lastly, cyclins are treated as either absent or present (0 or 1), so
Boolean models cannot simulate the continuous accumulation and removal of cyclin
molecules at different stages of the cell cycle [20].

The goal is to retain the elegance of the Boolean representation of the switch-
ing network, while introducing continuous variables for cell size, cell age, and cyclin
composition, in order to create a model that can be compared in quantitative detail to
experimental measurements with a minimal number of kinetic parameters that must
be estimated from the data. To this end, to keep the cyclin regulators as Boolean vari-
ables but model the cyclins themselves as continuous concentrations that increase
and decrease due to synthesis and degradation. Next, replace the Boolean model’s
metronome with real clock time to account for realistic rates of cyclin synthesis and
degradation, and for stochastic variability in the time spent in each Boolean state of
the model. Finally, it introduced a cell size variable, M(t), which affects progression
through late G1 phase. The M(t) increases exponentially with time as the cell grows
and decreases by a factor of ~2 when the cell divides. (The assumption of exponential
growth is not crucial; similar results are obtained assuming linear growth between cell
birth and division.)

Since the pioneering work of Leon Glass [21,22], hybrid (discrete-continuous)
models have been employed by systems biologists in a variety of forms and con-
texts [23-25]. Engineers have been modeling hybrid control systems for many years
[26-28], and they have created powerful simulation packages for such systems [29]:
SIMULINK [28], SHIFT [30-31] and CHARON [32], to name a few. It has not used
these simulation packages because model can be solved analytically.

1.2 METHODS

1.2.1  Simulations
It simulate a flow cytometry experiment with hybrid model in two steps.

Step 1: Creating complete ‘life histories’ for thousands of cells. At the start of the
simulation, we specity initial conditions at the beginning of the cycle (State 1) for a
progenitor cell. It used the following initial values of the state variables: [CycA] =
[CycB] = [CycE] = 1 and M = 3. The strategy is to follow this cell through its cycle
until it divides into two daughters. Then choose one of the two daughters at random
and repeat the process, continuing for 32,500 iterations. The first 500 cells discard,



