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Preface

Was plane geometry your favorite math course in high school? Did you
like proving theorems? Are you sick of memorizing integrals? If so, real
analysis could be your cup of tea. In contrast to calculus and elementary
algebra, it involves neither formula manipulation nor applications to other
fields of science. None. It is pure mathematics, and I hope it appeals to you,
the budding pure mathematician.

Berkeley, California, USA CHARLES CHAPMAN PuGH
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1

Real Numbers

1 Preliminaries

Before discussing the system of real numbers it is best to make a few general
remarks about mathematical outlook.

Language

By and large, mathematics is expressed in the language of set theory. Your
first order of business is to get familiar with its vocabulary and grammar.
A set is a collection of elements. The elements are members of the set and
are said to belong to the set. For example, N denotes the set of natural
numbers, 1,2, 3, .... The members of N are whole numbers greater than
or equal to 1. Is 10 a member of N? Yes, 10 belongs to N. Is 0 a member of
N? No. We write

xcA and y¢B

to indicate that the element x is a member of the set A and y is not amember
of B. Thus, 6819 ¢ Nand 0 ¢ N.

We try to write capital letters for sets and small letters for elements of sets.
Other standard sets have standard names. The set of integers is denoted
by Z, which stands for the German word zahlen. (An integer is a positive
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whole number, zero, or a negative whole number.) Is /2 € Z?No, v/2 ¢ Z.
How about —15? Yes, —15 € Z.

The set of rational numbers is called Q, which stands for “quotient.” (A
rational number is a fraction of integers, the denominator being nonzero.)
Is +/2 a member of Q? No, /2 does not belong to Q. Is 7 a member of Q7
No. Is 1.414 a member of Q7? Yes.

You should practice reading the notation “{x € A :” as “the set of x that
belong to A such that.” The empty set is the collection of no elements and
is denoted by @. Is 0 a member of the empty set? No, 0 ¢ .

A singleton set has exactly one member. It is denoted as {x} where x is
the member. Similarly if exactly two elements x and y belong to a set, the
set is denoted as {x, v}.

If A and B are sets and each member of A also belongs to B then A is a
subset of B and A is contained in B. We write’

ACB.

Is N a subset of Z? Yes. Is it a subset of Q? Yes. If A is a subset of B and
B is a subset of C, does it follow that A is a subset of C? Yes. Is the empty
set a subset of N7 Yes, @ C N. Is 1 a subset of N? No, but the singleton set
{1} is a subset of N. Two sets are equal if each member of one belongs to
the other. Each is a subset of the other. This is how you prove two sets are
~equal: show that each element of the first belongs to the second, and each
element of the second belongs to the first.

The union of the sets A and B is the set A U B, each of whose elements
belongs to either A, or to B, or to both A and to B. The intersection of A
and B is the set A N B each of whose elements belongs to both A and to
B.If AN B is the empty set then A and B are disjoint. The symmetric
difference of A and B is the set AA B each of whose elements belongs to
A but not to B, or belongs to B but not to A. The difference of A to B is
the set A \ B whose elements belong to A but not to B. See Figure 1.

A class is a collection of sets. The sets are members of the class. For
example we could consider the class £ of sets of even natural numbers. s
the set {2, 15} a member of £? No. How about the singleton set {6}? Yes.
How about the empty set? Yes, each element of the empty set is even.

When is one class a subclass of another? When each member of the
former belongs also to the latter. For example the class 7 of sets of positive
integers divisible by 10 is a subclass of &, the class of sets of even natural

¥ When some mathematicians write A C B they mean that A is a subset of B, but A # B. We do
not adopt this convention. We accept A C A.
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Figure 1 Venn diagrams of union, intersection, and differences.

numbers, and we write 7 C £. Each set that belongs to the class 7 also
belongs to the class £. Consider another example. Let S be the class of
singleton subsets of N and D be the class of subsets of N each of which has
exactly two elements. Thus {10} € S and {2, 6} € D. Is & a subclass of D?
No. The members of § are singleton sets and they are not members of D.
Rather they are subsets of members of D. Note the distinction, and think
about it.

Here is an analogy. Each citizen is a member of his or her country — 1
am an element of the USA and Tony Blair is an element of the UK. Each
country is a member of the United Nations. Are citizens members of the
UN? No, countries are members of the UN.

In the same vein is the concept of an equivalence relation on a set S.
It is a relation s ~ s’ that holds between some members 5, s’ € § and it
satisfies three properties: For all s, s',s” € §

(@) s ~s.

(b) s ~ s’ implies that s" ~ 5.

(c) s ~ s’ ~ s implies that s ~ 5"

The equivalence relation breaks § into disjoint subsets called equiva-
lence classes’ defined by mutual equivalence: the equivalence class con-
taining s consists of all elements s’ € S equivalent to s and is denoted [s].
The element s is a representative of its equivalence class. See Figure 2.
Think again of citizens and countries. Say two citizens are equivalent if
they are citizens of the same country. The world of equivalence relations is
egalitarian: I represent my equivalence class USA just as much as does the
President.

Truth
When is a mathematical statement accepted as true? Generally, mathemati-

cians would answer “Only when it has a proof inside a familiar mathematical

t The phrase “equivalence class™ is standard and widespread, although it would be more consistent
with the idea that a class is a collection of sets to refer instead to an “equivalence set.”
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Figure 2 Equivalence classes and representatives.

framework.” A picture may be vital in getting you to believe a statement.
An analogy with something you know to be true may help you understand
it. An authoritative teacher may force you to parrot it. A formal proof, how-
ever, is the ultimate and only reason to accept a mathematical statement
as true. A recent debate in Berkeley focused the issue for me. According
to a math teacher from one of our local private high schools, his students
found proofs in mathematics were of little value, especially compared to
“convincing arguments.” Besides, the mathematical statements were often
seen as obviously true and in no need of formal proof anyway. I offer you
a paraphrase of Bob Osserman’s response.

But a convincing argument is not a proof. A mathemati-
cian generally wants both, and certainly would be less likely
to accept a convincing argument by itself than a formal proof
by itself. Least of all would a mathematician accept the pro-
posal that we should generally replace proofs with convincing
arguments. '

There has been a tendency in recent years to take the notion of
proof down from its pedestal. Critics point out that standards of
rigor change from century to century. New gray areas appear
all the time. Is a proof by computer an acceptable proof? Is
a proof that is spread over many journals and thousands of
pages, that is too long for any one person to master, a proof?
And of course, venerable Euclid is full of flaws, some filled in
by Hilbert, others possibly still lurking.
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Clearly it is worth examining closely and critically the most ba-
sic notion of mathematics, that of proof. On the other hand, it is
important to bear in mind that all distinctions and niceties about
what precisely constitutes a proof are mere quibbles compared
to the enormous gap between any generally accepted version
of a proof and the notion of a convincing argument. Compare
Euclid, with all his flaws to the most eminent of the ancient
exponents of the convincing argument — Aristotle. Much of
Aristotle’s reasoning was brilliant, and he certainly convinced
most thoughtful people for over a thousand years. In some
cases his analyses were exactly right, but in others, such as
heavy objects falling faster than light ones, they turned out to
be totally wrong. In contrast, there is not to my knowledge a
single theorem stated in Euclid’s Elements that in the course
of two thousand years turned out to be false. That is quite an
astonishing record, and an extraordinary validation of proof
over convincing argument.

Here are some guidelines for writing a rigorous mathematical proof. See
also Exercise 0.

1.

Name each object that appears in your proof. (For instance, you might
begin your proof with a phrase, “consider a set X, and elements x, y
that belong to X,” etc.)

Draw a diagram that captures how these objects relate, and extract
logical statements from it. Quantifiers precede the objects quantified;
see below.

Proceed step-by-step, each step depending on the hypotheses, previ-
ously proved theorems, or previous steps in your proof.

Check for “rigor’”: all cases have been considered, all details have
been tied down, and circular reasoning has been avoided.

Before you sign off on the proof, check for counter-examples and any
implicit assumptions you made that could invalidate your reasoning.

Logic

Among the most frequently used logical symbols in math are the quantifiers
V and 3. Read them always as “for each” and “there exists.” Avoid reading
V as “for all,” which in English has a more inclusive connotation. Another
common symbol is =>. Read it as “implies.”
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The rules of correct mathematical grammar are simple: quantifiers appear
at the beginning of a sentence, they modify only what follows them in the
sentence, and assertions occur at the end of the sentence. Here is an example.

(1)

For each integer n there is a prime number p which is greater than n.

In symbols the sentence reads
VYvneZ 3dp e P suchthat p > n,

where P denotes the set of prime numbers. (A prime number is a whole
number greater than 1 whose only divisors in N are itself and 1.) In English,
the same idea can be re-expressed as

2) Every integer is less than some prime number

or

A prime number can always be found

3)

which is greater than any given integer.

These sentences are correct in English grammar, but disastrously WRONG
when transcribed directly into mathematical grammar. They translate into
disgusting mathematical gibberish:

(WRONG 2) VneZ n<p 3peP

(WRONG 3) dpeP p>n VYnel.

Moral Quantifiers first and assertions last. In stating a theorem, try to apply
the same principle. Write the hypothesis first and the conclusion second.

See Exercise 0.

The order in which quantifiers appear is also important. Contrast the next
two sentences in which we switch the position of two quantified phrases.

) WVneN)y (YmeN) dpeP) suchthat (nm < p).

(5) (VneN) (dpeP) suchthat (Vm e N) (@nm < p).

(4) is a true statement but (5) is false. A quantifier modifies the part of a
sentence that follows it but not the part that precedes it. This is another
reason never to end with a quantifier.
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Moral Quantifier order is crucial.

There is a point at which English and mathematical meaning diverge. It
concerns the word “or.” In mathematics “a or b” always means “a or b or
both a and b,” while in English it can mean “a or b but not both ¢ and 5.”
For example, Patrick Henry certainly would not have accepted both liberty
and death in response to his cry of “Give me liberty or give me death.”
In mathematics, however, the sentence “17 is a prime or 23 is a prime” is
correct even though both 17 and 23 are prime. Similarly, in mathematics
a = b means that if a is true then b is true but that b might also be true
for reasons entirely unrelated to the truth of a. In English, @ = b is often
confused with b = a.

Moral In mathematics, “or” is inclusive. It means and/or. In mathematics,
a = b is not the same as b = a.

Itis often useful to form the negation or logical opposite of a mathematical
sentence. The symbol ~ is usually used for negation, despite the fact that the
same symbol also indicates an equivalence relation. Mathematicians refer
to this as an abuse of notation. Fighting a losing battle against abuse of
notation, we write — for negation. For example, if m, n € Nthen —(m < n)
means it is not true that m is less than n. In other words

—(m<n) = m>n.

(We use the symbol = to indicate that the two statements are equivalent.)
Similarly, =(x € A) means itis not true that x belongs to A. In other words,

—(xe€eA) = x¢gA.

Double negation returns a statement to its original meaning. Slightly more
interesting is the negation of “and” and “or.” Just for now, let us use the
symbols & for “and” and V for “or.” We claim

(6) —(a&b) = -—-av-b.

(7 —{avb) = -—a& b

Forifitis not the case that both a and b are true then at least one must be false.
This proves (6), and (7) is similar. Implication also has such interpretations:

(8) a=b = —a&-b = -avhb.
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) —(a=b) = a&-b
What about the negation of a quantified sentence such as
—(¥Yn € N,3p € P suchthatn < p).

The rule is: change each V to 3 and vice versa, leaving the order the same,
and negate the assertion. In this case the negation is

dneN, VpeP, n=p.

In English it reads “There exists a natural number n, and for all primes p,
n > p.” The sentence has correct mathematical grammar but of course is
false. To help translate from mathematics to readable English, a comma can
be read as “and” or “such that.”

All mathematical assertions take an implication form a = b. The hy-
pothesis is a and the conclusion is b. If you are asked to prove a = b,
there are several ways to proceed. First you may just see right away why
a does imply b. Fine, if you are so lucky. Or you may be puzzled. Does a
really imply 4?7 Two routes are open to you. You may view the implication
in its equivalent contrapositive form —a <= —b as in (8). Sometimes this
will make things clearer. Or you may explore the possibility that a fails to
imply b. If you can somehow deduce from the failure of a implying b a
contradiction to a known fact (for instance if you can deduce the existence
of a planar right triangle with legs x, y but x? + y2 # h? where h is the
hypotenuse) then you have succeeded in making an argument by contra-
diction. Clearly (9) is pertinent here. It tells you what it means that a fails
to imply b, namely that  is true and, simultaneously, b is false.

Euclid’s proof that N contains infipitely many prime numbers, is a clas-
sic example of this method. The hypothesis is that N is the set of natural
numbers and that P is the set of prime numbers. The conclusion is that P is
an infinite set. The proof of this fact begins with the phrase “Suppose not.”
It means: suppose, after all, that the set of prime numbers P is merely a
finite set, and see where this leads you. It does not mean that we think P
really is a finite set, and it is not a hypothesis of a theorem. Rather it just
means that we will try to find out what awful consequences would follow
from P being finite. In fact if P were' finite then it would consist of m

In English grammar, the subjunctive mode indicates doubt, and I have written Euclid’s proof
in that form — “if P were finite” instead of “if P is finite,” “each prime would divide N evenly,”
instead of “each prime divides N evenly,” etc. At first it seems like a fine idea to write all arguments
by contradiction in the subjunctive mode, exhibiting clearly their impermanence. Soon, however, the
subjunctive and conditional language becomes ridiculously stilted and archaic. For consistency then,
as much as possible, use the present tense.



