Encyclopedia of Mathematics and its Applications 108

COMBINATORIAL
MATRIX CLASSES



ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

Combinatorial Matrix Classes

RICHARD A. BRUALDI

University of Wisconsin, Madison

| CAMBRIDGE
) UNIVERSITY PRESS




CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press,
New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521865654

© R. A. Brualdi 2006

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without

the written permission of Cambridge University Press.

First published 2006

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN-13 978-0-521-86565-4 hardback
ISBN-10 0-521-86565-4 hardback



ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

FOUNDED BY G.-C. ROTA

Editorial Board
P. Flajolet, M. Ismail, E. Lutwak

Volume 108

Combinatorial Matrix Classes



ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

FOUNDED EDITOR G.-C. ROTA
Editorial Board
P. Flajolet, M. Ismail, E. Lutwak

40
41

N. White (ed.) Matroid Applications

S. Sakai Operator Algebras in Dynamical Systems
W. Hodges Basic Model Theory

Stahl and V. Totik General Orthogonal Polynomials

Da Prato and J. Zabczyk Stochastic Equations in Infinite Dimensions
Bjorner et al. Oriented Matroids

Edgar and L. Sucheston Stopping Times and Directed Processes

Sims Computation with Finitely Presented Groups

Palmer Banach Algebras and the General Theory of *-Algebras I

Borceux Handbook of Categorical Algebra I

Borceux Handbook of Categorical Algebra 11

Borceux Handbook of Categorical Algebra I11

F. Kolchin Random Graphs

Katok and B. Hasselblatt Introduction to the Modern Theory of Dynamical Systems
N. Sachkov Combinatorial Methods in Discrete Mathematics

N. Sachkov Probabilistic Methods in Discrete Mathematics

M. Cohn Skew Fields

Gardner Geometric Tomography

A. Baker, Jr., and P. Graves-Morris Padé Approzimants, 2nd edn
Krajicek Bounded Arithmetic, Propositional Logic, and Complexity Theory
Groemer Geometric Applications of Fourier Series and Spherical Harmonics
O. Fattorini Infinite Dimensional Optimization and Control Theory

C. Thompson Minkowski Geometry

B. Bapat and T. E. S. Raghavan Nonnegative Matrices with Applications
Engel Sperner Theory

Cvetkovic, P. Rowlinson and S. Simic Eigenspaces of Graphs

Bergeron, G. Labelle and P. Leroux Lombinatowial Species and Tree-Like Structures
Goodman and N. Wallach Representations and Jweriants of the Classical Groups
Beth, D. Jungnickel, and H. Lenz Desig"zn Theory I, 2nd edn

Pietsch and J. Wenzel Orthonormal Systems for Banach Space Geometry
E. Andrews, R. Askey and R. Roy Special Fungtions

Ticciati Quantum Field Theory for Mathematicians
. Stern Semimodular Lattices

. Lasiecka and R. Triggiani Control Theory for Partidl Differential Equations I
. Lasiecka and R. Triggiani Control Theory for Pawrtial Differential Equations II
A. Ivanov Geometry of Sporadic Groups I

Schinzel Polymomials with Special Regard to Reducibility

Lenz, T. Beth, and D. Jungnickel Destgn Theony II, 2nd edn

Palmer Banach Algebras and the General Theory of *_Algebras 11
Stormark Lie’s Structural Approach to PDE Systenss

F. Dunkl and Y. Xu Orthogonal Polynomials of Several Variables
P. Mayberry The Foundations of Mathematics in the Theory of Sets

Foias et al. Navier—Stokes Equations and Turbulence

Polster and G. Steinke Geometries on Surfaces

B. Paris and D. Kaminski Asymptotics and Mellin-Barnes Integrals
McEliece The Theory of Information and Coding, 2nd edn

Magurn Algebraic Introduction to K-Theory

Mora Solving Polynomial Equation Systems I

Bichteler Stochastic Integration with Jumps

Lothaire Algebraic Combinatorics on Words

A. Ivanov and S. V. Shpectorov Geometry of Sporadic Groups II
McMullen and E. Schulte Abstract Regular Polytopes

Gierz et al. Continuous Lattices and Domains

Finch Mathematical Constants

Jabri The Mountain Pass Theorem

Gasper and M. Rahman Basic Hypergeometric Series, 2nd edn
. C. Pedicchio and W. Tholen (eds.) Categorical Foundations
. Ismail Classical and Quantum Orthogonal Polynomials in One Variable
Mora Solving Polynomial Equation Systems 11

Olivieri and M. E. Vares Large Deviations and Metastability
W. Beineke and R. J. Wilson (eds.) Topics in Algebraic Graph Theory
. J. Staffans Well-Posed Linear Systems
M. Lothaire Applied Combinatorics on Words

MeEZEEPHRIORRPEESQRUS<PLIAII00POR

OFrEHZEO<POTPERADIIPOSQOIES >



Preface

In the preface of the book Combinatorial Matriz Theory' (CMT) I dis-
cussed my plan to write a second volume entitled Combinatorial Matriz
Classes. Here 15 years later (including 6, to my mind, wonderful years
as Department of Mathematics Chair at UW-Madison), and to my great
relief, is the finished product. What I proposed as topics to be covered in
a second volume were, in retrospect, much too ambitious. Indeed, after
some distance from the first volume, it now seems like a plan for a book
series rather than for a second volume. I decided to concentrate on topics
that I was most familiar with and that have been a source of much research
inspiration for me. Having made this decision, there was more than enough
basic material to be covered. Most of the material in the book has never
appeared in book form, and as a result, I hope that it will be useful to both
current researchers and aspirant researchers in the field. I have tried to be
as complete as possible with those matrix classes that I have treated, and
thus I also hope that the book will be a useful reference book.

[ started the serious writing of this book in the summer of 2000 and
continued, while on sabbatical, through the following semester. I made
good progress during those six months. Thereafter, with my many teaching,
research, editorial, and other professional and university responsibilities, I
managed to work on the book only sporadically. But after 5 years, I was
able to complete it or, if one considers the topics mentioned in the preface
of CMT, one might say I simply stopped writing. But that is not the way
I feel. I think, and I hope others will agree, that the collection of matrix
classes developed in the book fit together nicely and indeed form a coherent
whole with no glaring omissions. Except for a few reference to CMT, the
book is self-contained.

My primary inspiration for combinatorial matrix classes has come from
two important contributors, Herb Ryser and Ray Fulkerson. In a real sense,
with their seminal and early research, they are the “fathers” of the sub-
ject. Herb Ryser was my thesis advisor and I first learned about the class
A(R,S), which occupies a very prominent place in this book, in the fall of
1962 when I was a graduate student at Syracuse University (New York).

! Authored by Richard A. Brualdi and Herbert J. Ryser and published by Cambridge
University Press in 1991.
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X Preface

In addition, some very famous mathematicians have made seminal con-
tributions that have directly or indirectly impacted the study of matrix
classes. With the great risk of offending someone, let me mention only
Claude Berge, Garrett Birkhoff, David Gale, Alan Hoffinan, D. Konig. Vic-
tor Klee, Donald Knuth, H.G. Landau, Leon Mirsky, and Bill Tutte. To
these people, and all others who have contributed, I bow my head and say
a heartfelt thank-you for your inspiration.

As I write this preface in the summer of 2005, I have just finished my
40th year as a member of the Department of Mathematics of the University
of Wisconsin in Madison. I have been fortunate in my career to be a member
of a very congenial department that, by virtue of its faculty and staff,
provides such a wonderful atmosphere in which to work, and that takes
teaching, research, and service all very seriously. It has also been my good
fortune to have collaborated with my graduate students, and postdoctoral
fellows, over the years, many of whom have contributed to one or more of
the matrix classes treated in this book. I am indebted to Geir Dahl who
read a good portion of this book and provided me with valuable comments.

My biggest source of support these last 10 years has been my wife Mona.
Her encouragement and love have been so important to me.

Richard A. Brualdi
Madison, Wisconsin
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1

Introduction

In this chapter we introduce some concepts and theorems that are impor-
tant for the rest of this book. Much, but not all, of this material can be
found in the book [4]. In general, we have included proofs of theorems only
when they do not appear in [4]. The proof of Theorem 1.7.1 is an excep-
tion, since we give here a much different proof. We have not included all
the basic terminology that we make use of (e.g. graph-theoretic terminol-
ogy), expecting the reader either to be familiar with such terminology or
to consult [4] or other standard references.

1.1 Fundamental Concepts

Let
A=lag] E=21:2,i0:;mm7=12;.:0ym)

be a matrix of m rows and n columns. We say that A is of size m by
n, and we also refer to A as an m by n matrix. If m = n, then A is a
square matrix of order n. The elements of the matrix A are always real
numbers and usually are nonnegative real numbers. In fact, the elements
are sometimes restricted to be nonnegative integers, and often they are
restricted to be either 0 or 1. The matrix A is composed of m row vectors

ay,Q9,...,0, and n column vectors (31, s, ..., B, and we write
aq
(6D )
A=| | =188 ... Bal.
(X'ITI‘

It is sometimes convenient to refer to either a row or column of the
matrix A as a line of A. We use the notation AT for the transpose of the
matrix A. If A = AT, then A is a square matrix and is symmetric.



2 Introduction

A zero matrix is always designated by O, a matrix with every entry
equal to 1 by .J, and an identity matrix by /. In order to emphasize the
size of these matrices we sometimes include subscripts. Thus .J,, ,, denotes
the m by n matrix of all 1's, and this is shortened to .J,, if m = n. The
notations Oy, »,O,, and I, have similar meanings.

A submatriz of A is specified by choosing a subset of the row index set
of A and a subset of the column index set of A. Let I C {1,2,..., m} and
JC{1,2,...,n}. Let I = {1,2,...,m} \ I denote the complement of I in
11,2, .,m}, and let J = {1,2,... ,n} \ J denote the complement of J in
{1,255 n}. Then we use the following notations to denote submatrices of

AllLJ] = [aipiel,je J),
AL J) = ai:i€1,j € J],
AllLJ) = [aj:i € 1,5 € J],
A(L,J) = |a;j:i € 1,§ € J),

All,] = A[L,{1,2,...,n}],
Al J] = A{L,2,...,m}, J],
A(I,-] = A[l,{1,2,...,n}], and

Al J) = A[{1,2,..., m}, J).

These submatrices are allowed to be empty. If I = {i} and J = {j}.
then we abbreviate A(I,J) by A(i, 7).

We have the following partitioned forms of A:
All,J) ‘ AL, J) All, "]

L A= |——
A, J] ’ A(L,.) A(I, ]

A=

and

A= | AL J)| AL T)

The n! permutation matrices of order n are obtained from I,, by arbi-

trary permutations of its rows (or of its columns). Let 7 = (m, 72, ..., Tn)
be a permutation of {1,2,...,n}. Then 7 corresponds to the permutation
matrix Pr = [p;;] of order n in which pir, =1 (i = 1,2,..., n) and all

other p;; = 0. The permutation matrix corresponding to the inverse 7! of
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mis PT. Tt thus follows that P, ! = P, and thus an arbitrary permutation
matrix P of order n satisfies the matrix equation

pPPT =pPTp=1,.

Let A be a square matrix of order n. Then the matrix PAPT is similar to
A. If we let Q be the permutation matrix PT, then PAPT = QT AQ. The
row vectors of the matrix PrA are o, Gtry, ..., @, . The column vectors
of AP, are B, Brs,...,Bx, where -t = («f,7h,..., 7). The column
vectors of APT are B, 8., Br, . Thus if P is a permutation matrix,
the matrix PAPT is obtained from A by simultaneous permutations of its
rows and columns. More generally, if A is an m by n matrix and P and @)
are permutation matrices of orders m and n, respectively, then the matrix
PAQ is a matrix obtained from A by arbitrary permutations of its rows
and columns.

Let A = [a;;] be a matrix of size m by n. The pattern (or nonzero
pattern) of A is the set

P(A) = {(i,j): ai; #0, i=1,2,....,m, j=12,...,n}

of positions of A containing a nonzero element.

With the m by n matrix A = [a;;] we associate a combinatorial config-
uration that depends only on the pattern of A. Let X = {z1,%2,...,2,}
be a nonempty set of n elements. We call X an n-set. Let

Xi={zj:a;; #0,5=1,2,...,n} (i=1,2,...,m).

The collection of m not necessarily distinct subsets X, Xo, ..., X, of the
n-set X is the configuration associated with A. If P and () are permu-
tation matrices of orders m and n, respectively, then the configuration
associated with PAQ is obtained from the configuration associated with A
by relabeling the elements of X and reordering the sets X;, Xa,..., Xp,.

Conversely, given a nonempty configuration X, Xo,...,X,, of m subsets
of the nonempty n-set X = {z1,22,...,2,}, we associate an m by n
matrix A = [a;;] of 0's and 1’s, where a;; = 1 if and only if z; € X;

i=1,2,....m;j=1,2,...,m).

The configuration associated with the m by n matrix A = [a;;] fur-
nishes a particular way to represent the structure of the nonzeros of A.
We may view a configuration as a hypergraph [1] with vertex set X and
hyperedges X1, Xa,...,X;n. This hypergraph may have repeated edges,
that is, two or more hyperedges may be composed of the same set of ver-
tices. The edge-vertex incidence matriz of a hypergraph H with vertex
set X = {x1,29,...,2,} and edges X1, Xo,...,X,, is the m by n matrix
A = [a;;] of 0’s and 1’s in which a;; = 1 if and only if z; is a vertex of edge
X; (i=1,2,...,m;j=1,2,...,n). Notice that the hypergraph (configura-
tion) associated with A is the original hypergraph H. If A has exactly two
1’s in each row, then A is the edge-vertex incidence matrix of a multigraph
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where a pair of distinct vertices may be joined by more than one edge. If
no two rows of A are identical, then this multigraph is a graph.

Another way to represent the structure of the nonzeros of a matrix is
by a bipartite graph. Let U = {uy,ua, ..., umy} and W = {w;, ws.. .., wy}
be sets of cardinality m and n, respectively, such that UNW = &. The
bipartite graph associated with A is the graph BG(A) with vertex set
V = U UW whose edges are all the pairs {u;,w;} for which a;; # 0.
The pair {U, W} is the bipartition of BG(A).

Now assume that A is a nonnegative integral matrix, that is, the el-
ements of A are nonnegative integers. We may then associate with A a
bipartite multigraph BMG(A) with the same vertex set V bipartitioned
as above into U and W. In BMG(A) there are a;; edges of the form
{uj,w;j} (i = 1,2,...,m;j = 1,2,...,n). Notice that if A is a (0,1)-
matrix, that is, each entry is either a 0 or a 1, then the bipartite multigraph
BMG(A) is a bipartite graph and coincides with the bipartite graph BG(A).
Conversely, let BMG be a bipartite multigraph with bipartitioned vertex set
V = {U,W} where U and W are as above. The bipartite adjacency matrix
of BMG, abbreviated bi-adjacency matriz, is the m by n matrix A = [a;;]
where a;; equals the number of edges of the form {u;, w;} (the multiplicity
of (u;,v;)) (i = 1,2,...,m;j = 1,2,...,n). Notice that BMG(A) is the
original bipartite multigraph BMG.

An m by n matrix A is called decomposable provided there exist non-
negative integers p and ¢ with 0 < p+¢ < m+n and permutation matrices
P and Q such that PAQ is a direct sum A; & As where A; is of size p by
q. The conditions on p and ¢ imply that the matrices A; and A, may be
vacuous! but each of them contains either a row or a column. The matrix
A is indecomposable provided it is not decomposable. The bipartite graph
BG(A) is connected if and only if A is is indecomposable.

Assume that the matrix A = [a;;] is square of order n. We may represent
its nonzero structure by a digraph D(A). The vertex set of D(A) is taken to
be an n-set V = {vy,va,...,v,}. Thereis an arc (v;,v;) from v; to v; if and
only if a;; # 0 (i,j = 1,2,...,n). Notice that a nonzero diagonal entry of A
determines an arc of D(A) from a vertex to itself (a directed loop or di-loop).
If A is, in addition, a nonnegative integral matrix, then we associate with
A a general digraph GD(A) with vertex set V' where there are a;; arcs of
the form (v;,v;) (1,7 =1,2,...,n). If Ais a (0,1)-matrix, then GD(A) is a
digraph and coincides with D(A). Conversely, let GD be a general digraph
with vertex set V. The adjacency matriz of GD(A) is the nonnegative
integral matrix A = [a;;] of order n where a;; equals the number of arcs of
the form (v;,v;) (the multiplicity of (v, v;)) (1,5 =1,2..... n). Notice that
GD(A) is the original general digraph GD.

Now assume that the matrix A = [a;;] not only is square but is also
symmetric. Then we may represent its nonzero structure by the graph

'If p+ g = 1, then A; has either a row but no columns or a column but no rows. A
similar conclusion holds for A> if p+g=m+n — 1.
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G(A). The vertex set of G(A) is an n-set V = {vy,va,...,v,}. There is an
edge joining v; and v; if and only if a;; # 0 (1,7 = 1,2, ..., n). A nonzero

diagonal entry of A determines an edge joining a vertex to itself, that is, a
loop. The graph G(A) can be obtained from the bipartite graph BG(A) by
identifying the vertices u; and w; and calling the resulting vertex v; (i =
1,2,...,n). If Ais, in addition, a nonnegative integral matrix, then we
associate with A a general graph GG(A) with vertex set V where there are
a;j edges of the form {v;.v;} (i,j =1,2,...,n). If Ais a (0,1)-matrix, then
GG(A) is a graph and coincides with G(A). Conversely, let GG be a general
graph with vertex set V. The adjacency matriz of GG is the nonnegative
integral symmetric matrix A = [a,;] of order n where a;; equals the number
of edges of the form (v;,v;) (the multiplicity of {v;,v;}) (i,j =1.2...., n).
Notice that GG(A) is the original general graph GG. A general graph with
no loops is called a multigraph.

The symmetric matrix A of order n is symmetrically decomposable pro-
vided there exists a permutation matrix P such that PAPT = A, & A,
where A; and A, are both matrices of order at least 1; if A is not sym-
metrically decomposable, then A is symmetrically indecomposable. The
matrix A is symmetrically indecomposable if and only if its graph G(A) is
connected.

Finally, we remark that if a multigraph MG is bipartite with vertex
bipartition {U, W} and A is the adjacency matrix of MG, then there are
permutation matrices P and ) such that

o C
PAQ = [ T O]

where C' is the bi-adjacency matrix of MG (with respect to the bipartition
{UW}).2

We shall make use of elementary concepts and results from the theory
of graphs and digraphs. We refer to [4], or books on graphs and digraphs,
such as [17], [18], [2], [1], for more information.

1.2 Combinatorial Parameters

In this section we introduce several combinatorial parameters associated
with matrices and review some of their basic properties. In general, by a
combinatorial property or parameter of a matriz we mean a property or
parameter which is invariant under arbitrary permutations of the rows and
columns of the matrix. More information about some of these parameters
can be found in [4].

Let A = [a;;] be an m by n matrix. The term rank of A is the maximal
number p = p(A) of nonzero elements of A with no two of these elements
on a line. The covering number of A is the minimal number k = k(A) of

2If G is connected, then the bipartition is unique.
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lines of A that contain (that is, cover) all the nonzero elements of A. Both
p and k are combinatorial parameters. The fundamental minimax theorem
of Konig (see [4]) asserts the equality of these two parameters.

Theorem 1.2.1

A set of nonzero elements of A with no two on a line corresponds in the
bipartite graph BG(A) to a set of edges no two of which have a common
vertex, that is, pairwise vertex-disjoint edges or a matching. Thus Theorem
1.2.1 asserts that in a bipartite graph, the maximal number of edges in a
matching equals the minimal number of vertices in a subset of the vertex
set that meets all edges.

Assume that m < n. The permanent of A is defined by

per(A) = E a1i,A2iy - - - O,

where the summation extends over all sequences iy, is,...,i,, with 1 <i; <
ip < -+ < 1im < n. Thus per(A) equals the sum of all possible products of
m elements of A with the property that the elements in each of the products
occur on different lines. The permanent of A is invariant under arbitrary
permutations of rows and columns of A, that is,

per(PAQ) = per(A),if P and Q are permutation matrices.

If A is a nonnegative matrix, then per(A) > 0 if and only if p(A4) = m.
Thus by Theorem 1.2.1, per(A) = 0 if and only if there are permutation
matrices P and @ such that

AL Oy
Pad= [Am Aa ]

for some positive integers k and [ with k+1 = n+ 1. In the case of a square
matrix, the permanent function is the same as the determinant function
apart from a factor &1 preceding each of the products in the defining sum-
mation. Unlike the determinant, the permanent is, in general, altered by
the addition of a multiple of one row to another and the multiplicative
law for the determinant, det(AB) = det(A) det(B), does not hold for the
permanent. However, the Laplace expansion of the permanent by a row or
column does hold:

per(A) = iaijper(/l(i.j)) (Ji=1;25:5:; n).

i=1
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We now define the widths and heights of a matrix. In order to simplify
the language, we restrict ourselves to (0,1)-matrices. Let A = [a;;] be a
(0, 1)-matrix of size m by n with r; I’'s in row ¢ (i = 1,2,...,m). We call
R = (r1,72,...,7y) the row sum vector of A. Let o be an integer with
0<a<ry,i=12,...,m. Consider a subset J C {1,2,...,n} such that
each row sum of the m by |J| submatrix

E = A, J]

of A is at least equal to . Then the columns of E determine an a-set
of representatives of A. This terminology comes from the fact that in the
configuration of subsets X, Xo, ..., X of X = {xy,xa,...,2,} associated
with A (see Section 1.1), the set Z = {z; : j € J} satisfies

ZNnX;|>a (i=1,2,...,m).

The a-width of A equals the minimal number ¢, = €4(A) of columns of A
that form an a-set of representatives of A. Clearly, ¢, > |a|, but we also
have

=<K€ <<€ (11)

where 7 is the minimal row sum of A. The widths of A are invariant under
row and column permutations.

Let E = A[-, J] be a submatrix of A having at least « 1’s in each row
and suppose that |J| = €(«). Then E is a minimal a-width submatriz of
A. Let F be the submatrix of E composed of all rows of E that contain
exactly o 1’s. Then F' cannot be an empty matrix. Moreover, F' cannot
have a zero column, because otherwise we could delete the corresponding
column of E and obtain an m by €, — 1 submatrix of A with at least o 1’s
in each row, contradicting the minimality of €,. The matrix F' is called a
critical a-submatriz of A. Each critical a-submatrix of A contains the same
number ¢, of columns, but the number of rows need not be the same. The
minimal number d, = d,(A) of rows in a critical a-submatrix of A is called
the a-multiplicity of A. We observe that §, > 1 and that multiplicities
of A are invariant under row and column permutations. Since a critical
a-submatrix cannot contain zero columns, we have §; > ¢(1).

Let the matrix A have column sum vector S = (s1,82,...,5,), and let
3 be an integer with 0 < 3 < s; (1 < j < n). By interchanging rows
with columns in the above definition, we may define the 3-height of A to
be the minimal number ¢ of rows of A such that the corresponding t by n
submatrix of A has at least 3 1's in each column. Since the 3-height of A
equals the S-width of AT, one may restrict attention to widths.

We conclude this section by introducing a parameter that comes from
the theory of hypergraphs [1]. Let A be a (0,1)-matrix of size m by n.
A (weak) t-coloring of A is a partition of its set of column indices into ¢
sets I, 1s,....I; in such a way that if row i contains more than one 1,
then {j : a;; = 1} has a nonempty intersection with at least two of the



