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Preface

A historical perspective

The subject matter of this book had its genesis in Riemann’s 1854 “habil-
itation” address: “Uber die Hypothesen, welche der Geometrie zu Grunde
liegen” (On the Hypotheses, which lie at the Foundations of Geometry).
Volume I1 of Spivak’s Differential Geometry contains an English translation
of this influential lecture, with a commentary by Spivak himself.

Riemann, undoubtedly the greatest mathematician of the 19th century,
aimed at introducing the notion of a manifold and its structures. The prob-
lem involved great difficulties. But, with hypotheses on the smoothness of
the functions in question, the issues can be settled satisfactorily and there
is now a complete treatment.

Traditionally, the structure being focused on is the Riemannian metric,
which is a quadratic differential form. Put another way, it is a smoothly
varying family of inner products, one on each tangent space. The resulting
geometry — Riemannian geometry — has undergone tremendous develop-
ment in this century. Areas in which it has had significant impact include
Einstein’s theory of general relativity, and global differential geometry.

In the context of Riemann’s lecture, this restriction to a quadratic dif-
ferential form constitutes only a special case. Nevertheless, Riemann saw
the great merit of this special case, so much so that he introduced for it
the curvature tensor and the notion of sectional curvature. Such was done
through a Taylor expansion of the Riemannian metric.

The Riemann curvature tensor plays a major role in a fundamental prob-
lem. Namely: how does one decide, in principle, whether two given Rie-
mannian structures differ only by a coordinate transformation? This was
solved in 1870, independently by Christoffel and Lipschitz, using different
methods and without the benefit of tensor calculus. It was almost 50 years
later, in 1917, that Levi-Civita introduced his notion of parallelism (equiv-
alent to a connection), thereby giving the solution a simple geometrical
interpretation.

Riemann saw the difference between the quadratic case and the general
case. However, the latter had no choice but to lay dormant when he re-
marked that “The study of the metric which is the fourth root of a quartic
differential form is quite time-consuming and does not throw new light to
the problem.” Happily, interest in the general case was revived in 1918
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by Paul Finsler’s thesis, written under the direction of Carathéodory. For
this reason, we refer to the general case as Riemann-Finsler geometry, or
Finsler geometry for short.

Finsler geometry is closely related to the calculus of variations. See §1.0.
As such its deeper study went back at least to Jacobi and Adolf Kneser. In
his Paris address in 1900, Hilbert formulated 23 unsolved problems. The
last one was devoted to the geometry of the calculus of variations. It is the
only problem for which he did not formulate a specific question/conjecture.
Hilbert gave praise to Kneser’s book, then new. He provided an account of
the invariant integral, and emphasized the importance of the probiem of
multiple integrals. The Hilbert invariant integral plays an important role
in all modern treatments of the subject.

The geometrical data in Finsler geometry consists of a smoothly vary-
ing family of Minkowski norms (one on each tangent space), rather than
a family of inner products. This family of Minkowski norms is known as a
Finsler structure. Just like Riemannian gecmetry, there is the equivalence
problem: how can one decide (in principle) whether two given Finsler struc-
tures differ only by a transformation induced from a coordinate change? It
is not unreasonable to expect that the solution of the equivalence problem
will again involve a connection and its curvature, together with the proper
space on which these objects live.

In Riemannian geometry, the connection of choice was that constructed
by Levi-Civita, using the Christoffel symbols. It has two remarkable at-
tributes: metric-compatibility and torsion-freeness. Although we now know
that in Finsler geometry proper, these cannot both be present in the same
connection, such was perhaps not common knowledge during the turn of
the century. Even after reaching this realization, one still faces the daunting
task of writing down viable structural equations for the connection. Fur-
thermore, the Levi-Civita (Christoffel) connection operates on the tangent
bundle T'M of our underlying manifold M. But the same cannot be said of
its Finslerian counterpart.

It was not until 1926 that significant progress was made by Ludwig
Berwald (1883-1942), from an analytical perspective. See the poignant and
informative obituary by Max Pinl in Scripta Math. 27 (1965), 193-203.

Berwald’s work stemmed from the study of systems of differential equa-
tions, and was very much rooted in the calculus of variations. He introduced
a connection and two curvature tensors, all rightfully bearing his name. See
Matsumoto’s appendix (“A History of Finsler Geometry”) in Proceedings
of the 33rd Symposium on Finsler Geometry (ed. Okubo), 1998, Lake Ya-
manaka. (A revised version is scheduled to appear in Tensor.) The Berwald
connection is torsion-free, but is {necessarily) not metric-compatible. The
Berwald curvature tensors arc of two types: an hh- one not unlike the Rie-
mann curvature tensor, and an hv- one which automatically vanishes in
the Riemannian setting. Berwald’s constructions have, since their incep-
tion, been indispensable to the geometry of path spaces.
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Enthusiasts of metric-compatibility were not to be outdone. It is an amus-
ing irony that although Finsler geometry starts with only a norm in any
given tangent space, it regains an entire family (!) of inner products, one for
each direction in that tangent space. This is why one can still make sense
of metric-compatibility in the Finsler setting. In 1934, Elie Cartan intro-
duced a connection that is metric-compatible but has torsion. The Cartan
connection remains, to this day, immensely popular with the Matsumoto
and the Miron schools of Finsler geometry. Besides the curvature tensors
of hh- and hv- type, there is a third curvature tensor associated with the
Cartan connection. It is of vu- type. Curiously, this last tensor is numeri-
cally identical to the curvature of a canonical (albeit singular) Riemannian
metric on each tangent space.

Back in the torsion-free camp, the next progress came in 1948, when the
Chern connection was discovered. Its formula differs from that of Berwald’s
by an A term. In natural coordinates on the slit tangent bundle TM \ 0,
the Chern connection coefficients are given by

g ( 89s; _ Sgix . Bons )
2 dxk oz bx7

To get those for the Berwald connection, one 51mply adds on the tensor
A jx- More importantly, replacing the operator 61 by 2 35 gives the familiar
Levi-Civita (Christoffel) connection of Riemannian metrics.

The connections of Berwald and Chern are both torsion-free. They also
fail, slightly but expectedly, to be metric-compatible. Of the two, the Chern
connection is simpler in form, while the Berwald connection effects a leaner
hh-curvature for spaces of constant flag curvature. These connections co-
incide when the underlying Finsler structure is of Landsberg type. They
further reduce to a linear connection on M, one which operates on T'M,
when the Finsler structure is of Berwald type.

In the generic Finslerian case, none of the connections we mentioned
operates directly on the tangent bundle TM over M. Chern realized in his
solution of the equivalence problem that, by pulling back TM so that it
sits over the manifold of rays SM rather than M, one provides a natural
vector bundle on which these connections may operate. It is within this
geometrized setting that the equivalence problem and its solution admit a
sound conceptual interpretation.

The layout of the book

The Riemann-Finsler manifolds form a much larger class than the Rie-
mannian manifolds. Correspondingly, the former has a much more extensive
literature, connected with the names Synge, Berwald, E. Cartan, Buse-
mann, Rund, and many of our contemporaries. It is not the objective of
this book to provide a comprehensive survey. Rather, following the general
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outline of Riemann and Hilbert, our aim is to develop the subject some-
what independently, with Riemannian geometry as a special case. We hope
our attempt at least reflects some of the spirits of those two pioneers.

This book is comprised of three parts:

* Finsler Manifolds and Their Curvature: four chapters.
* Calculus of Variations and Comparison Theorems: five chapters.
* Special Finsler Spaces over the Reals: five chapters.

The key points of each chapter are detailed in our table of contents. Given
that, we refrain from discussing here the specific topics covered.

There are fourteen chapters with an average of 30 pages each. The
chapters are intentionally kept short. It seems that psychologically, one’s
progress through the Finsler landscape is more easily monitored this way.
Every chapter is devoted to (only) one or two major results. This con-
straint allows us to base each chapter on a single theme, thereby rendering
the book more teachable.

Regarding classroom use, the students we have in mind are advanced
undergraduates or first-year graduate students. They are assumed to have
had at least a small amount of tensor analysis, to the extent that they
are comfortable with the gymnastics of raising and lowering indices. It
would also help if they have had some exposure to manifolds in the ab-
stract, so that pull-backs and push-forwards are familiar operations. Some
computational experience with the Gaussian curvature of Riemannian sur-
faces would provide adequate motivation and intuition. This book contains
enough material for roughly three semester courses.

We have adopted a candid style of writing. If something is deemed simple
or straightforward, then it really is. If an omitted calculation is long, we say
so. Details, annotations, and remarks are provided for the harder or subtler
topics. Perhaps these gestures will help encourage the newly initiated to
stay the course and not give up too easily.

At the end of every chapter, one finds a list of references. Other than
a few books, these consist primarily of research papers mentioned in that
chapter. We have chosen to list them there for a reason. It is helpful to be
able to tell, at a glance, the research territories and boundaries with which
the chapter in question has made contact. We hope this feature helps foster
the book’s image as an invitation to ongoing research. Incidentally, a master
bibliography also appears at the end of the book.

We have compiled 393 exercises. Among those, there are 80 that prompt
the reader to fill in some of the steps that we have omitted. Nothing was left
out due to laziness on our part. Instead, the omissions are to be thought of
as casualties of the editorial process. Their inclusion would either prove to
be too distracting, or add unnecessarily to the size of the book. Those 80
problems aside, the remaining 313 exercises explore examples, touch upon
new frontiers, and prepare for developments in later chapters.
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If the purpose of the reader is to gain a nodding acquaintance of Finsler
geometry, then the exercises can be skipped without harm, until some spe-
cific ones are referred to later. If the reader plans to do research in Finsler
geometry, then practically all the exercises need to be carefully worked
out. And, to assist those in the second group, we have provided detailed
step-by-step guidance on the more challenging problems. The adventurous
reader can always restore as much challenge as he or she wants by blocking
out some of our suggestions. We simply want to ensure that no one feels
demoralized by any of the exercises.

A good number of ezplicit examples are presented in this book. Those
discussed in the sections proper include:

Minkowski spaces: §1.3A, §14.1.

Riemannian spaces: §13.3, especially §13.3B, §13.3C.
Berwald spaces: §10.3, §11.6B.

Randers spaces: §1.3C, §11.0, §11.6B, §12.6.

Spaces of scalar curvature: §3.9B.

Spaces of constant flag curvature: §12.6, §12.7.

*

* * * * *

Many more can be found among the exercises.

The above examples all involve y-global Finsler structures F, with the
exception of the Berwald-Rund example treated in §10.3. By y-global, we
mean that F is smooth and strongly convex on TM \ 0. The said example
does not meet this stringent criterion, but is nevertheless included because
it illustrates some computation well. It also provides excellent motivation
for the rest of Chapter 10 and all of Chapter 11.

By no means have we exhausted the realm of interesting examples, y-
global or not. For instance, it is with great reluctance that we have omitted
Antonelli’s Ecological Models, Matsumoto’s Slope of a Mountain Metric,
and Models of Physiological Optics discussed by Ingarden. The interested
reader can consult the book The Theory of Sprays and Finsler Spaces with
Applications in Physics and Biology written by these three authors.

It is true that Finsler geometry has not been nearly as popular as its
progeny—Riemannian geometry. One reason is that deceptively simple for-
mulas can quickly give rise to complicated expressions and mind-boggling
computations. With the effort of many dedicated practitioners, this situa-
tion is slowly being turned around. Nonetheless, some intrinsic aspects of
the subject are suggesting bounds on what one can do with mere pencil
and paper.

Fortunately, we are in a technological age. Symbolic computations and
large-scale computations on the computer are readily accessible. We took
the first step in that direction by writing Maple codes for the Finslerian
analogue of the Gaussian curvature. Then we implemented those codes
on some explicit examples in Chapter 12. We hope this modest attempt
represents the start of a trend. This could also be the venue by which a
geometry-minded computer scientist helps advance the field significantly.
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As we mentioned earlier, this book is not intended to be a comprehensive
survey. Furthermore, our choice of topics and examples is guided by an eye
towards the global geometry. The picture we paint can possibly be rather
idiosyncratic. In spite of that, the material covered here is fundamental
enough to be considered essential to all branches of Finsler geometry.

To our colleagues

In earlier versions of the manuscript, our definitions of the nonlinear
connection and related objects on TM \ 0 differed from those of our fellow
researchers by factors involving the Finsler function F. In this final ver-
sion, we have decided to match their notations exactly. It is hoped that by
removing an unnecessary accent, we have enhanced the book’s suitability
as a textbook or as a basic desk reference. Here are the specifics:

1

i ; ik , ; .
Ny =2y = =20y = vt - Gt vy,

F
5 F) 5 . . o
— = —— — N'. — o= dyt N dz? .
bxz9 Ox7 7 oyt 8y oy + N dz

We have not changed our philosophy of working, as much as possible, with
objects that are homogeneous of degree zero in y. Our reason for doing so
is that they make intrinsic sense on the manifold of rays SM. For instance,
we prefer to work with N ij /F rather than just N ij. But, unlike our earlier
notation, the N*; here is identical to the N*; used by others.

Next, our convention on the wedge product does not contain the normal-
ization factors 4, 3, etc. For example, if 6, ¢, and £ are 1-forms, then:

A == 08¢ - (®8,
OACAE = 0QCRE — IRER(C
+(RER®RD - (®IRE
+£@0®( — £®(®0.

Our placement of indices and sign convention on the curvature tensor
are adequately illustrated by what we do in the Riemannian case:

—yi = gij agsj _ agjk + Ogks
*k T2 et b T 8w )
: 'y ik o _
Ry = axi - azJ[ + Yue i — 7wt ‘thk .

Finally, our G* := v, y7y* is twice the G* of Matsumoto.

Houston, Tezas D. Bao
Berkeley, California S.-S. Chern
Indianapolis, Indiana Z. Shen
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