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Preface

We hope that the content and the treatment of the subject of reinforced
concrete structures in this book will appeal to students, teachers, and practi-
cing members of the structural engineering profession.

The book has grown from two editions of seminar notes entitled Ultimate
Strength Design of Reinforced Concrete Structures (Vol. 1), printed by the
University of Canterbury for extension study seminars conducted for practi-
cing structural engineers in New Zealand. Those early editions of seminar
notes have been considerably extended and updated. Many years of experience
in teaching theory and design, and in design and research, have helped to
form ideas and to provide background material for the book.

The text emphasizes the basic behavior of reinforced concrete elements and
of structures—in particular, their strength and deformation characteristics
up to ultimate load. It endeavors to give the reader a thorough knowledge of
the fundamentals of reinforced concrete. Such a background is essential to a
complete and proper understanding of building codes and design procedures.
The design engineer may be disappointed that the text does not extend into a
range of design charts, tables, and examples. Such information is available
elsewhere. The main purpose of the text is to bring about a basic under-
standing of the background to such applied material.

The current building code of the American Concrete Institute (ACI 318-71)
is one of the most widely accepted reinforced concrete codes. It has been
adopted by some countries and has strongly influenced the codes of many
others. For this reason extensive reference is made to the ACI provisions, but
comparison with other building codes appears where necessary. The book is
not heavily code oriented, however. The emphasis is on why certain engineer-
ing decisions should be made, rather than how they should be executed. It is
our belief that engineers should be capable of rationally assessing design
procedures and should not be blind followers of code provisions.

The strength and serviceability approach to design is emphasized through-
out the book because we believe that it is the most realistic method.

The book commences with a discussion of basic design criteria and the
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vi Preface

properties of concrete and steel. The strength and deformation of reinforced
concrete structural members with flexure, flexure and axial load, shear, and
torsion are then presented in some depth, followed by a discussion of bond
and anchorage. The service load behavior of reinforced concrete members is
then examined, with emphasis on deflection and crack control. This material
is followed by a treatment of frames and shear walls. Because we believe that
correct proportioning of components is insufficient to ensure a successful
design, the book ends with a discussion on the detailing of structural com-
ponents and joints.

We have not attempted to treat the design of specific types of structures.
Thorough understanding of the behavior of reinforced concrete components
and of structural analysis should enable a designer to undertake the design of
the common range of structures and to find solutions to special problems.

An aspect of the book that distinguishes it from most other texts on rein-
forced concrete is the treatment of the effects of earthquake loading and
means of achieving design procedures for seismic-resistant structures.
Seismic design is assuming more importance with the realization that seismic
zones may be more extensive than has heretofore been assumed. Seismic de-
sign involves more than a consideration of additional static lateral loads on
the structure. Proper attention to details, and an understanding of possible
failure mechanisms, are essential if structures capable of surviving major
earthquakes are to be designed. Considerations of behavior under intense
seismic loading involve an understanding of the deformation characteristics
of members and structures in the inelastic range, as well as the development
of strength, and these areas are given due regard in the text.

A detailed discussion of slabs has been omitted because a book-length
treatment is in preparation.

We hope that the book will serve as a useful text to teachers preparing a
syllabus for undergraduate courses in reinforced concrete. Each major topic
has been treated in enough depth to permit the book to be used by graduate
students in advanced courses in reinforced concrete. It is hoped that many
practicing engineers, particularly those facing the formidable task of having
to design earthquake-resistant structures, will also find this book a useful
reference.

We would be grateful for any constructive comments or criticisms that
readers may have and for notification of any errors that they will inevitably
detect.

The authors have received a great deal of assistance, encouragement, and
inspiration from numerous sources. Thanks are due to our many colleagues
at the University of Canterbury, particularly to Prof. H. J. Hopkins, who
initiated a strong interest in concrete at this University, to Dr. A.J. Carr, who
read part of the manuscript, and to Mrs. Alice Watt, whose patience when
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typing the manuscript is greatly appreciated. Also, the dedicated technicians
of the Department of Civil Engineering of the University of Canterbury and
our graduate students have carried the major burden of the testing reported,
as well as the photographic and drafting work, and their efforts must be
recorded with appreciation. To many professional engineering colleagues in
New Zealand, including O. A. Glogau, G. F. McKenzie, and I. C. Arm-
strong of the New Zealand Ministry of Works, and consulting engineers
A. L. Andrews, J. F. Hollings, R. J. P. Garden, and K. Williamson, we owe a
great deal for constructive comment and discussions. To our many colleagues
in North America, Europe, and Australia, including M. P. Collins, R. F.
Furlong, W. L. Gamble, P. Lampert, J. MacGregor, and G. Base, who read
part of the manuscript, and to V. V. Bertero, F. Leonhardt, and H. Riisch, we
are grateful. Also our thanks are due to our own University of Canterbury,
the Portland Cement Association, the American Iron and Steel Institute, the
American Society of Civil Engineers, and the American Concrete Institute.

Finally, this undertaking could never have been achieved without the
patience, encouragement, and understanding of our wives.

R. PARK
T. PauLAY

Christchurch, New Zealand
August 1974
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The Design Approach

1.1 DEVELOPMENT OF WORKING STRESS AND ULTIMATE
STRENGTH DESIGN PROCEDURES

Several of the early studies of reinforced concrete members were based on
ultimate strength theories, for example, Thullie’s flexural theory of 1897
and the parabolic stress distribution theory of Ritter in 1899. However at
about 1900 the straight-line (elastic) theory of Coignet and Tedesco became
generally accepted, mainly because elastic theory was the conventional
method of design for other materials and also because it was thought that the
straight-line distribution of stress led to mathematical simplification. In
addition, tests had shown that the use of elastic theory with carefully chosen
values for the allowable working stresses led to a structure displaying satis-
factory behavior at the service loads and having an adequate margin of
safety against collapse. Thus elastic theory has been the basis of reinforced
concrete design for many years.

Recently there has been renewed interest in ultimate strength theory as a
basis of design. After more than half a century of practical experience and
laboratory tests, the knowledge of the behavior of structural concrete has
vastly increased and the deficiencies of the elastic theory (working stress)
design method have become evident. This has resulted in periodic adjust-
ment to the working stress design method, but it has become increasingly
apparent that a design method should be based on the actual inelastic
properties of the concrete and steel. Thus ultimate strength design became
accepted as an alternative to working stress design in the building codes for
reinforced concrete of the American Concrete Institute (ACI) in 1956 and
of the United Kingdom in 1957. These two design approaches may be sum-
marized as follows.

Working Stress Design (Elastic Theory)

The sections of the members of the structure are designed assuming straight-
line stress-strain relationships ensuring that at service loads the stresses in



2 The Design Approack

the steel and the concrete do not exceed the allowable working stresses. The
allowable stresses are taken as fixed proportions of the ultimate or yield
strength of the materials; for example, for compression in bending 0.45 of the
cylinder strength of the concrete may be assumed. The bending moments and
forces that act on statically indeterminate structures are calculated assuming
linear-elastic behavior.

Ultimate Strength Design

The sections of the members of the structures are designed taking inelastic
strains into account to reach ultimate (maximum) strength (i.e., the concrete
at maximum strength and usually the steel yielding) when an ultimate load,
equal to the sum of each service load multiplied by its respective load factor,
is applied to the structure. Typical load factors used in practice are 1.4 for
dead load and 1.7 for live load. The bending moments and forces that act on
statically indeterminate structures at the ultimate load are calculated
assuming linear-elastic behavior of the structure up to the ultimate load.
Alternatively, the bending moments and forces are calculated taking some
account of the redistribution of actions that may occur because of the non-
linear relationships that exist between the actions and deformations in the
members at high loads.

Some of the reasons for the trend towards ultimate strength design are
as follows:

1. Reinforced concrete sections behave inelastically at high loads; hence
elastic theory cannot give a reliable prediction of the ultimate strength of
the members because inelastic strains are not taken into account. For
structures designed by the working stress method, therefore, the exact load
factor (ultimate load/service load) is unknown and varies from structure to
structure. -

2. Ultimate strength design allows a more rational selection of the load
factors. For example, a low load factor may be used for loading known more
exactly, such as dead load, and a higher load factor for less certain loads, such
as live load.

3. The stress-strain curve for concrete is nonlinear and is time dependent.
For example, the creep strains for concrete under constant sustained stress
may be several times the initial elastic strain. Therefore, the value of the
modular ratio (ratio of the elastic modulus of steel to that of concrete) used
in working stress design is a crude approximation. Creep strains can cause a
substantial redistribution of stress in reinforced concrete sections, and this
means that the stresses that actually exist at the service loads often bear little
relation to the design stresses. For example, the compression steel in columns
may reach the yield strength during the sustained application of service



