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Introduction to Nanofiber Materials

Presenting the latest coverage of the fundamentals and applications of nanofibrous
materials and their structures for graduate students and researchers, this book bridges
the communication gap between fiber technologists and materials scientists and engineers.
Featuring intensive coverage of electroactive, bioactive, and structural nanofibers, it
provides a comprehensive collection of processing conditions for electrospinning and
includes recent advances in nanoparticle-/nanotube-based nanofibers. The book also
covers mechanical properties of fibers and fibrous assemblies, as well as characterization
methods.
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Foreword

Professor Frank Ko is a recognized expert on the production, braiding and weaving
of textile fibers, with strong interests in polymer science. He and 1 worked together in
the mid 1990s, in a cooperative research effort supported by the US Army, on new
polymer fibers, including nanofibers. Our complementary experience and knowledge
were synergistic.

Early information about nanofibers made by electrospinning was sequestered in the
research departments of a few filter manufacturers, and in the notebooks and memories
of engineers from the former Soviet Union, who designed and manufactured gas masks.
Since the 1930 patents of A. Formbhals, little research on nanofibers was published
except for a paper by P. K. Baumgarten in 1971 and papers by R. St. J. Manley in 1981,
until my publications that began in 1995, with graduate student Jayesh Doshi.

Other polymer scientists soon began to develop their interests in electrospinning and
nanofibers. The number of publications on nanofibers grew exponentially. By 2003, a
paper on this subject, with mathematical models of co-author Alexander Yarin, was
credited as “the frequently cited paper in a fast moving front of materials science,” a part
of materials science previously left almost entirely to scientists in industrial textile fiber
laboratories. Activity in the form of research and nanofiber manufacturing in the
filtration industry, development of other useful products, and the establishment of
startup companies, has ramified into a multitude of industries and now extends through-
out the world.

Professor Ko presents fundamental knowledge that will enable students and other
readers to create and use polymer, ceramic, carbon and metal nanofibers for a wide
spectrum of purposes.

It is clear that the information in this book will be useful to researchers learning or
working in the following areas.

Filtration industry, a complex industry of rapidly growing scientific sophistication.

Bioanalytical extracellular matrix material.

Drug delivery in clinical medicine.

Scaffolding for growth of implantable organs.

Components of electronic devices.

Selective transport of ions.

Solar sails and other “gossamer” structures manufactured and used in interplanetary
space.
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Support of molecules and other tiny structures for examination in high resolution
transmission electron microscopes.

For molecular scale observation of changes in molecular substances produce by
energetic electrons (a great advance in radiation chemistry).

Development of smart textiles containing wearable computers and sensors.

The list of the things that are already being done with nanofibers in laboratories
throughout the world is much longer, with fascinating possibilities yet to be articulated.
This book provides a portal to the future, set in a context of polymers, fibers, textiles and
materials science.

Darrell H. Reneker
The University of Akron



Preface

Polymeric materials in nanofiber form are of fundamental and practical importance.

Nanofibrous materials are the fundamental building blocks of living systems, from
the 1.5 nm double helix strand of DNA molecules to the nanoscale fibres of sensory
cells forming the extracellular matrices for tissues and organs. Considering the abundant
evidence of nature’s material design using nanofibers, it is reasonable to expect that the
availability of nanoscale fibers having adjustable electronic, biological and mechanical
properties will create the enabling technology for clean energy, clean environment,
health care, microelectronics and nanoscience research. Inspired by these fibrous
material designs in nature, coupled with the rapid development of research tools for
nanotechnology fueled by substantial funding from Government programs such as the
Multidisciplinary University Research Initiative (MURI) and by the National Science
Foundation (NSF), a conducive environment was created in the 1990s for great strides
in the new field of nanofiber technology. Specifically, in a MURI program sponsored by
the Army Research Office (ARO), under the leadership of Professor Darrell Reneker, a
versatile method was rediscovered for the formation of nanofibers by the electrospin-
ning process. The MURI program has triggered unprecedented growth in nanofiber
technology. I was fortunate to be involved in the ARO MURI program and enjoyed
stimulating collaborations with Professor Reneker in the electrospinning of nanofiber
yarns and the spinning of electrically conductive polymer into nanofibers with the late
Nobel laureate Professor Alan MacDiarmid.

Benefiting from the experience gained in nanofiber technology from the MURI
program, this book is an outgrowth of course notes designed by me for students enrolled
in an NSF funded Research-Curriculum Development in Tissue Engineering (CRCD)
Program led by Professor Cato Laurencin at Drexel University. The course was
organized into ten lectures plus three laboratory sessions for students of diverse
academic backgrounds including materials engineering, chemical engineering, mechan-
ical engineering and biomedical engineering. Most of the students had no background in
fibrous materials.

Building on the CRCD lecture notes, this book is organized into ten chapters. Chapter
1 provides an introduction to nanomaterials in general and nanofibers in specific.
Chapter 2 presents an overview of polymer science with an emphasis on fiber forming
polymers. Chapter 3 deals with nanofiber technology with a specific focus on electro-
spinning. Chapter 4 concerns process modeling of the electrospinning process and
mechanistic modeling of nanofibrous assemblies that include yarn mechanics and

Xiii
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mechanics of nonwoven structures. In Chapter 5 we describe the various methods for
the characterization of nanofiber materials. Chapters 6, 7 and 8 are devoted to functional
nanofibers with Chapter 6 focusing on bioactive nanofibers, Chapter 7 focusing on
electroactive nanofibers, and Chapter 8 focusing on structural composite nanofibers. In
Chapter 9, various applications of nanofibers are presented and finally, in Chapter 10, the
book concludes with an overview of the trend in nanofiber technology.

For various reasons the writing of the book was put on hold for a period of time until [
moved to the University of British Columbia in Canada where [ had the good fortune of
having Dr. Lynn Yuqin Wan join the book project. With the dedicated participation of
Lynn the book project was revived. As the book is based on the lecture notes delivered
over the past decade, it draws heavily from the research results generated by my
students, postdoctoral fellows and collaborators. I would like to thank them, in rough
chronological order: Ali Ashraf, Manal Shaker, Ian Norris, Hoa Lam, Nic Titchenol,
Haihu Ye, Afaf El-Aufy Jason Lyons, Jonathan Ayutsede, Milind Gahndi, Heejae
Yang, Yoshihiro Yamashita, Sachiko Sukigara, Jie Xiong, Nasir M. Uddin, Takako
Inoue, Chunhong Wang, Yuan Li, Jiashen Li, Lin Li Masoumeh Bayat, Wuyi Zhou,
Nicole Lee, Justin Richie, lan Dallmeyer, Phoebe Y. Li, Victor Leung, LiTing Lin and
Ryan Huizing. Special thanks go to Professor Darrell Reneker for his generous sharing
of the knowledge on electrospinning and to the late Professor Alan MacDiarmid who
enthusiastically shared his knowledge in conductive polymers and helped to establish
the area of electroactive nanofibers.

It must be noted that the research work of my group would not be possible without
the sustained support of various funding agencies including the ARO, ONR, AFOSR,
NSF, NASA, the Natural Sciences and Engineering Research Council of Canada
(NSERC) and the Canada Foundation of Innovation (CFI). I would like to pay special
tribute to the late Hidefumi Kato of Kato-tech who took my advice to build one of the
earliest commercial Nanofiber Electrospinning Units (NEUs) and funded an extensive
literature collection project in my laboratory that we utilize extensively in this book.

Finally I want to thank the editorial staff of Cambridge University Press, Production
Editor Vania Cunha and Sarah Marsh (nee Matthews) Editor, Engineering, who
patiently shepherded us through the completion of this book. Last but not the least I
want to thank my daughter Jana Ko who patiently proofread the earlier version of the
manuscript.

Frank K. Ko
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1.1 How big is a nanometer?

By definition, a nanometer, abbreviated as nm, is a unit for length that measures one
billionth of a meter. (1 nm = 10> pm = 10 mm = 107 cm = 102 m.) Our hair is
visible to the naked eye. Using an optical microscope we can measure the diameter of
our hair, which is in the range of 20-50 microns (um) or 20 000-50 000 nm. Blood
cells are not visible to the naked eye, but they can be seen under the microscope,
revealing a diameter of about 10 microns or 10 000 nm. The diameter of hydrogen
atoms is 0.1 nm. In other words 10 hydrogen atoms can be placed side-by-side in 1 nm.
Figure 1.1 provides an excellent illustration of the relative scales in nature. The
discovery of nanomaterials ushered us to a new era of materials. We have progressed
from the microworld to the nanoworld.

1.2 What is nanotechnology?

According to the National Science Foundation in the United States nanotechnology is
defined as [1]:

Research and technology development at the atomic, molecular or macromolecular levels, in
the length scale of approximately 1-100 nanometer range, to provide a fundamental
understanding of phenomena and materials at the nanoscale and to create and use structures,
devices and systems that have novel properties and functions because of their small and/or
intermediate size. The novel and differentiating properties and functions are developed at a
critical length scale of matter typically under 100 nm. Nanotechnology research and
development includes manipulation under control of the nanoscale structures and their
integration into larger material components, systems and architectures. Within these larger scale
assemblies, the control and construction of their structures and components remains at the
nanometer scale. In some particular cases, the critical length scale for novel properties and
phenomena may be under [ nm (e.g., manipulation of atoms at ~0.1 nm) or be larger than 100 nm.
(e.g., nanoparticle reinforced polymers have the unique feature at ~ 200-300 nm as a function of
the local bridges or bonds between the nanoparticles and the polymer).

Accordingly nanotechnology is the scientific field that is concerned with the study of
the phenomena and functions of matters within the dimensional range of 0.1-100 nm.
It is the study of the motion and changes of atoms, molecules, and of other forms of

1
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Fig. 1.1 Tllustration of relative scale in nature. (The linear distance is indicated on this logarithmic
scale in meters.)

matter. Nanotechnology, building upon the foundation of nanoscience, is concerned
with the manufacturing of new materials, new devices and the development of research
methodology and techniques for new technology.

Nanotechnology can also be referred to as the technology for the formation of
nanomaterials and nanodevices, including the formation of nanostructural units
according to a specific methodology to form macroscopic treatment (processing) of
nanomaterials such as dispersion, forming technology as in the case of the formation of
nanofibers and their composites.

Nanotechnology can be organized into three levels. The first level is molecular
(atomic) nanotechnology wherein the molecules (atoms) are spatially organized in the
nanospace in a repetitive manner. This in turn will create internally ordered nano-
structures. Self-assembly and mineralization in biological materials are examples
of molecular nanotechnology. The technology for controlling the morphology and
uniformity of nanostructures is called the second level of nanotechnology.
For example, in colloids and gels we do not concern ourselves with the order of
arrangement of the molecule itself at the nanoscale. They form only morphologies of
nanostructure of certain regularity. The third level of nanotechnology is concerned
with the technology of the formation of nanosacle structures but is unable to control
the degree of order of the molecules and atoms in the nanostructures. At the third level
of nanotechnology the morphology and uniformity of the nanostructure are also
uncontrolled [2].

Historical development of nanotechnology

Although the use of nanomaterials can arguably be traced back to over 1000 years ago
when the smoke from a candle was used in China as ink, the first scientific discussion of
nanotechnology is widely attributed to the 1959 Nobel Prize winning physicist Richard
Feynman in his well known “There’s Plenty of Room at the Bottom” lecture at the
California Institute of Technology (Caltech). In this lecture he boldly challenged his
audience in his now famous statement.



