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Solid State Physics
An introduction to its theory



Preface

This book is intended to be a realistic introduction to the theory
of solid state physics. It is meant to fill the gap between the more
empirical books such as Kittel’s Introduction to Solid State Physics
or Dekker’s Solid State Physics, and the more advanced theoreti-
cal texts such as Kittel’s Quantum Theory of Solids. No claim is
made that the subject is covered comprehensively. This is
clearly not possible within a book of this size. However, it is
hoped that the included material will give a good basic back-
ground to the subject.

This text should be useful to research workers both in industry
and university, and to final honours students. It should be
especially appropriate to the several new M.Sc. courses in Solid
State Physics. The reader is assumed to have taken a first course
in Quantum Mechanics.

Problems are included at the end of each chapter and a few
of these have been used to extend the theory slightly. M.K.S.
(Sommerfeld) units are used throughout and the charge on the
electron is taken as —e = —1-602 X 1072 C.

H.C.
Tynemouth, March 1968
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The One-electron Approximation

§ 1.1 The quantum mechanics

When it is noted that the interatomic distance in solids is of the
order of a few angstrom units, it is not at all obvious how it is
possible to separate the motion of the electrons in any sense.
This monograph is primarily concerned with the results ob-
tainable from the one-electron approximation and it is the
purpose of the first chapter to indicate the relevant theoretical
background. Initially it is necessary to explain how the motion
of the electrons can be treated apart from the lattice of heavy
ions and then to deal with the separation of the electrons them-
selves.

The results of the Schrédinger wave mechanics will be used
freely throughout this book and perhaps it is as well to recount
briefly the main results of quantum mechanics. For further in-
formation the reader is referred to any of the standard texts such
as Schiff or Mandl.

In quantum theory, the state of any physical system is de-
scribed as completely as possible by a wave function ¢ which in
general is complex and depends on the position co-ordinates of
all the N particles and on the time. Strictly ¢ depends upon the
spin co-ordinates as well. This will be emphasized where appro-
priate.

The real quantity §*Jdr is the probability that the co-
ordinates ¢; of the particles lie within the volume element



SOLID STATE PHYSICS

dr = dQ1dq2 o s dq:;N
at the time ¢.

To be physically meaningful, the wave functions must be
single-valued and in general they are continuous and quad-
ratically integrable. The latter property makes it possible to
normalize the wave function to unity,

ie. /!ll*l,l‘dT =1

The physical observables like energy and angular momentum
which are present in classical theory in the form of dynamical
variables are represented in quantum mechanics by operators
which are both linear and Hermitian. A linear operator A has
the property

Alapr + bp2) = aAin + bAYe (1.1)

where i1, 2 are two state functions and a, b are constants. The
Hermitian condition demands that

[ Aadr = ( [ ¢2*A¢1d7>* (1.2)

There are some general rules to act as a guide in finding the
form for these operators. In the Schrodinger representation they
are:

(i) the operator representing one of the position co-
ordinates ¢; or the time ¢ is simply ¢; or &

(ii) the operator representing one of the components of
momentum p; conjugate to ¢; is% -a%

The quantum operator representing a dynamical variable
which is expressed in terms of the position co-ordinates, mo-
mentum and time is obtained by substitution using the above
rules.

As an example consider the angular momentum of a point
mass moving in some orbit. Classically the angular momentum

2



THE ONE-ELECTRON APPROXIMATION

L of such a particle about an axis through the origin is given by
the vector product

L=rA\p

where r is the radius vector and p the momentum of the particle.
For a particle moving in the x—y plane the angular momentum
vector lies along the z-axis and

L; = xpy — yps

The quantum mechanical operator which represents the
angular momentum is

h( 0 0
=35 7%)
If the state function i is an eigenfunction of the operator A
corresponding to a classical variable,

i.e. AY = ay (1.3)

where a is some constant, then in this state the variable has pre-
cisely the value a.a is an eigenvalue. It can be shown that the
eigenvalues of a Hermitian operator are real and that if ¢; and
J; are eigenfunctions belonging to different eigenvalues then
they are orthogonal,

e /wwdr =0 i#j

Two operators A and B are said to commute if
(AB)¢ = (BA)¢Y

when applied to an arbitrary wave function ¢. Quantum
mechanical operators do not always possess this property. The
operators representing the position co-ordinate x and the con-
jugate momentum p, do not commute,

; hf © 0 fi
L.e. = = —x= Y ==

¢ 1 ( ox 8x>"b z¢

When two operators commute it can be shown that there exists
a set of functions which are simultaneously eigenfunctions for

3



SOLID STATE PHYSICS

both operators. This result is important in the classification of
states and is referred to again in Chapter 3.

In classical mechanics the Hamiltonian H defines the total
energy for a conservative system. The time variation of the
state is determined through Hamilton’s equations. The most
important quantum mechanical operator is the analogous
Hamiltonian J# obtained by substitution. The dependence of
the state function ¢ on the time is given by

__ndy
Hp = —2=r (1.4)
This is the time-dependent Schrodinger equation.

If ¢ is an eigenfunction of the Hamiltonian operator, the
eigenvalue gives the energy E of the state and the wave function
merely changes its phase in time,
ie. Hy = Eys (1.5)
and Pe(E) = o(E)e 1EUR (1.6)
Equation (1.5) is the time-independent Schrodinger equation.

In an eigenstate of the energy, the average value of any
observable 4, defined by

/ Y Apdr

is a constant if 4 does not explicitly involve the time. The wave
function is then said to define a stationary state.

For those readers completely new to solid state theory it is
possible to omit the remainder of this chapter on a first reading.

§ 1.2 The Born-Oppenheimer approximation
The classical Hamiltonian for a collection of N particles of
masses m; and charges e; respectively, is given by

2
H:?:_:n_i_

1N XN (417}

22

2;,51j5147€0 |rt —_— rjl
(i)

(1.7)
where r; is the position vector of the ith particle. The first sum

4



THE ONE-ELECTRON APPROXIMATION

is taken over the 3N components of momenta and represents the
kinetic energy of the system. The second term represents the
electrostatic potential energy of the system and the sum is over
all the possible pairs of particles. The corresponding quantum
mechanical Hamiltonian is (omitting spin-dependent terms),

I i

—#\,
%:,Z(W)V‘ 2.2 Z477€0|rt—'1| S

i#j g
where V2 operates on the spatial co-ordinates of the ith
particle. The eigenfunctions of this operator must involve the
3N position co-ordinates of the system (4N if spin is included).
In a crystal there are two types of particles present, the
nuclei and the electrons. For our purpose the structure of the
nucleus may be ignored.
The Schrodinger equation for a stationary state of a crystal

may be written

H(Ri, Re, . . .;r,r2,. .. )V (R, Re,y. . 51, 02,. . )
=EY (R, Re,...;r,r,...) (1.9)

where the wave function ¥ and the Hamiltonian are functions
of all the nucleus and electron co-ordinates R; and r; respec-
tively. The number of variables is reduced if the atomic
electrons are separated into core and valence electrons, al-
though this division is somewhat arbitrary. The core electrons
have atomic wave functions which do not overlap to any appre-
ciable extent at the observed interatomic spacing in the crystal
and consequently may be considered to be unaffected by com-
bining the atoms to form a crystal. Conversely, the wave
functions of the valence electrons overlap considerably, and are
modified by the process of crystal formation.

The Hamiltonian of (1.9) then contains all the interactions of
an assembly of ion cores and valence electrons and may be
expressed as

H(Ri, Rz ...5r,02,...)
Zfion(Rl, R, .. ) +9felectron(l'1, re .. )
+”electron(Rl, R2, ey F1, K2, .. ) (I.IO)

-ion
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2
where Hion = —z L Ve2 + lz ZW(R¢ — R))

e e L8 e
H electron — == Z#;W'
and -%e.lectron — zz (ri — Ry)
-ion

The ionic Hamiltonian #;on describes the motion of the set of
like ions, each composed of a nucleus and a shell of core elec-
trons, which interact through a potential W(R; — Rj). #electron
corresponds to the valence electrons which interact through
a Coulomb potential. The electron-ion Hamiltonian takes
account of the interaction between the ionic cores and valence
electrons which are assumed to act through a potential
v(ri — Ry).

The total crystal potential may be written

Ve = Vion + V(R1, Rey .. .5 11,02, .. .)
with -

Vien = %%g;W(Ri — Ry
V=333 —1_—,.” + sz r —

i#j 47€0 ] r

where Vion is the potential of interaction between the ion cores,
and Vis the potential of interaction of the electrons with the ion
cores and with each other.

Because the electronic masses are much less than the ionic
masses, the electrons move much more rapidly than the ions.
In the ‘Born-Oppenheimer’ approximation (1927), the
Schrédinger equation is solved for the N electrons in the field
of all the ions in some fixed configuration. The electronic wave
function (R1, Rz, ...; r1, r2, ...) depends on the variable
positions of the electrons r; and also on the nuclei-co-ordinates
R; regarded as parameters. The full crystal wave function is
written

1F(R1, Rz, ceay F1, P2, .. ) = (D(Rl, Rz, . ) .
J(R1, Rey .. .51, 02, ...) (1I.11)
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where @ is the lattice wave function describing the ionic motion
and is a function of the co-ordinates R; only.
i satisfies the equation,

fi2 "
-2
+ V(R Rey .. .51, 02, . . )] Y(R1, Rey .. 511, 02, .. .)
=E(Ri, R2,...)Y(R1, Roy .. .50, 02, ...) (1.12)

where m is the electron mass and V,2 operates on the electron
co-ordinates. The electron energy eigenvalue E(Ri, Rz, ...)
depends upon the particular ionic configuration considered.
This electron energy then appears as part of the effective
potential for the nuclear motion.

h2
{_vaka + [Vin(R1, Re, .. .)
7

4 E(Ry, Re, .. .)]} O(Ry, Re, . ..)
= EL®(R1, Rz, ...) (1.13)

The error produced by using the Born-Oppenheimer
approximation is small when the characteristic frequencies of
vibration of the ions are much smaller than the characteristic
electronic frequencies. Generally this implies that the ionic mass
may be much greater than the electronic mass which is, of
course, correct. However, if the energy required to excite an
electron to a higher level is small, implying a small electronic
frequency, the approximation breaks down. This is the case for
metals and then the ionic function ® depends on the electron
co-ordinates as well as the ionic co-ordinates.

Equatian (1.12) describes the electronic motion in a static
lattice. In practice it is solved assuming both the crystal sym-
metry and the lattice constant. This implies that the electronic
potential is a function of the electron co-ordinates only, and so
the electron energy cannot be used in (1.13) to determine the
nuclear motion. The equation becomes



SOLID STATE PHYSICS

A#2
[_Zl. — Vnz + V(rl, re, .. )] z/r(rl, re, .. )
=Ep(r, r2, ...) (1.14)

the atomic co-ordinates being given their observed mean
values. The potential includes all the interactions involving the
valence electrons and can be written

Ve, rey . .) = 3Ve(r) + Ve(ry, re, . . )

where VL (r;) represents the interaction between the ith electron
and the ion cores and where V, represents the total electron—
electron interaction.

§ 1.3 One-electron approximation

It is extremely difficult to solve atomic or nuclear problems in-
volving more than one electron. Even in the simplest cases
complicated numerical procedures have proved necessary. The
difficulty arises because the electron—electron potential contains
terms of the form e2/4meo | i — rj| involving the spacial co-
ordinates of two electrons. In the one-electron formulations
approximate solutions which treat the electrons separately are
considered. The Hartree method employs a simple product
wave function of the form

S(r1, ..o rn) = dr(r)de(re) . . . pn(ry)  (1.15)

It is important that the one-electron functions be normalizable
and that there be as many as electrons present. For the ground
state, the variational theorem of quantum mechanics requires
that the expectation value of the energy be a minimum. Con-
sequently, the best Hartree solution is that which minimizes
the integral

/‘/‘*('1, e IN)HP(r, . . ., ry)dr (1.16)



THE ONE-ELECTRON APPROXIMATION

where # is the Hamiltonian of equation (1.14), subject to the
restrictive conditions

[#+(m)dutr)drs = 1 (r.17)

This procedure may be carried out by the method of Lagrange
multipliers and the one-electron wave functions which minimize
(1.16) and satisfy (1.17) are given by

Hii(r1) = Eipi(r1) (1.18)
where 5#; is the one-electron Hamiltonian.

#i= -2 4 Vi)
i = om 1 L(ri

r2 ¢j rz)
L 22 /4—neo|r1 — rzldn (1.19)
The summation in the final term is over all the one-electron
wave functions except the ith. Each term may be given a
physical significance. The first term represents the kinetic
energy of the first electron, the second term represents the inter-
action between the electron and the ion cores and the final
term represents the average Coulomb energy of the electron in
the field produced by all the other electrons.

The Hamiltonian is not identical for all electrons and the
eigenfunctions are not orthogonal.

The simple Hartree method does not entirely neglect the in-
fluence of one electron upon another. Each electron moves in
the average field of the remainder. However, there is a serious
fault in the Hartree wave function. In quantum mechanics it
is impossible to distinguish between identical particles. This
means that if any two electrons are interchanged the initial and
final states of the system must have identical physical pro-
perties. Consequently the wave function can only change by an
unimportant phase factor. If the operator P interchanges the
co-ordinates (including spin) of the ith and kth electrons then

Py = b
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By repeating this interchange the original wave function is
restored. Hence it follows that 928 = 1 or ¢# = 41,

ie. Py = +4

The wave function is either symmetric or antisymmetric with
respect to permutations of the electron co-ordinates, when spin
is included. Experimental evidence (Pauli principle) shows that
electrons, and in fact all particles with half-integral spin, have
antisymmetric wave functions. Such particles are called
fermions.

The Hartree-Fock approach is to recognize that all electrons
are identical and to start with a determinantal wave function
satisfying the Pauli principle.

Yy = k ¢1<r1: 01‘)’ ¢1('2r 02) LR ¢1("N’ UN)

;f’N("la o1) én(ry, on) (1.20)

(r, o) denote the position and spin co-ordinates and £ is a
normalization constant (k = 1/4/N!if the ¢’s are orthonormal).
It should be noted that if ¢; = ¢;, two rows are identical and
the determinant vanishes. Only one electron may occupy a
given spin-orbital. Similarly if (r;, 0i) = (#;, ;) two columns
are identical and the determinant again vanishes. Two elec-
trons with the same spin are never at the same position in
space. The one-electron functions are again chosen to minimize
the expectation value of the Hamiltonian (1.14) subject to the
condition that each is normalized. It is necessary that the
functions be linearly independent so that it is possible to form
an orthogonal set from them (Adams, 1961).

The set of equations which the one-electron wave functions
must satisfy can be written in the ‘standard form’

Hipi(r1) = Eidi(r1) (1.21)

where the one-electron Hamiltonians are given by
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