

HANDBOOK of PARVOVIRUSES Volume II

Peter Tijssen

CRC Handbook of Parvoviruses

Volume II

Editor

Peter Tijssen, Ph.D.

Professor of Virology Center for Research in Comparative Medicine University of Quebec Laval, Quebec, Canada

Library of Congress Cataloging-in-Publication Data

CRC handbook of parvoviruses / editor, Peter Tijssen.

p. cm.

Includes bibliographies and index.

ISBN 0-8493-3217-6 (v. 1). -- ISBN 0-8493-3281-4 (v. 2)

1. Parvoviruses--Handbooks, manuals, etc. I. Tijssen, P.

[DNLM: 1. Parvoviridae. 2. Parvovirus Infections. QW 165 C911]

QR408.C73 1990

576'.6484--dc20

DNLM/DLC

for Library of Congress

89-15895

CIP

This book represents information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Every reasonable effort has been made to give reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use.

All rights reserved. This book, or any parts thereof, may not be reproduced in any form without written consent from the publisher.

Direct all inquiries to CRC Press, Inc., 2000 Corporate Blvd., N.W., Boca Raton, Florida 33431.

© 1990 by CRC Press, Inc.

International Standard Book Number 0-8493-3217-6 (Volume I) International Standard Book Number 0-8493-3218-4 (Volume II)

Library of Congress Card Number 89-15895 Printed in the United States

PREFACE

In the last 30 years, the importance of parvoviruses has become increasingly recognized. At first they were viewed as viruses with peculiar properties, but later it was realized that they are the cause of potentially serious diseases in animals and man. Most of the research on parvoviruses has been directed toward the characterization of the virus particle and to the molecular biology of its propagation. Reviews and the two, increasingly outdated, books tend to expand on these particular topics only.

When asked by CRC Press to edit a book on parvoviruses, I responded positively, for this was an opportunity to review not only the molecular biology of this virus group in detail, but also other, in practice perhaps more urgent, topics such as the involvement of parvoviruses in disease, diagnosis and treatment, epidemiology, and their use as research tools. The work was divided into five different sections (on a scale increasing from virion, via cell to individual): i.e., virion characterization, molecular biology, epidemiology, involvement in disease, and particular applications. The resulting work is in the form of a handbook since all areas of parvovirology are comprehensively covered, which I hope will improve substantially the useful life of this review. Later, it became evident that, in order to conform to the CRC Press publishing format regarding handbooks, the work had to be divided into two volumes.

These volumes are aimed at two major groups: those involved in research on parvoviruses or who use these viruses as research tools, and those involved in diagnostic kit and vaccine development for parvoviruses and in the general practice of diagnosis of parvovirus-related diseases. Moreover, this will expose both groups to what happens on the other side of the fence. Some of the most recent developments, those that have occurred since completion of writing these volumes, are not covered, which I regret, but cannot help due to problems in editing a multiauthored work of 33 chapters.

I wish to thank wholeheartedly the Editorial Board for their excellent suggestions and the authors who agreed to contribute their precious time to write one or more chapters for this work. I believe their efforts have resulted in valuable reviews of their respective fields. Some of this material has not been published before in either reviews or in primary literature. I hope the readers will profit as much from these essays as I have. In addition, I wish to thank Dr. R. Ruppanner, Director of this Center, for his support, Laure Bourgoin for (re)typing many of the chapters and her secretarial help, and the CRC editorial staff for their help. Finally, I thank my wife, Trics, for her help and express my gratitude to her and our children, Andrew and Janice, for putting up with being without their father during the many hours needed for editing these volumes.

Peter Tijssen

THE EDITOR

Peter Tijssen, Ph.D., is professor of virology at the Institut Armand-Frappier (Université du Québec), Ville de Laval (twin-city of Montréal, Canada), where he heads a research laboratory in the Center for Research in Comparative Medicine.

Dr. Tijssen attended the University of Wageningen (the Netherlands) for his undergraduate and doctoral studies (1972), and the Université de Montréal for his Ph.D. studies. After joining the Department of Microbiology and Immunology at the Université de Montréal in 1976, he moved to his current position at the Institut Armand-Frappier in 1985.

His major research interests include the development of virus detection methods, the study of animal coronaviruses, and the study of the replication of parvoviruses of vertebrates and invertebrates. He is the author of two books on detection methods (Elsevier), one of which is in press whereas the other has been reprinted more than once a year since its publication in 1985 and has been translated. He has lectured on this topic as a result of bilateral agreements with governments in countries in Europe, Africa, Asia, and for the World Health Organization. He serves also as member of the Editoral Board of the *Journal of Immunoassay*.

His main interests in parvoviruses are directed to porcine parvovirus and densonucleosis virus and he serves as a member of the International Committee for Taxonomy of Viruses (Parvovirus Study Group). Dr. Tijssen has presented a large number of lectures at national or international meetings, is author of many reviews, and has published more than 70 research papers.

CONTRIBUTORS

Volume I

Max Arella, Ph.D.

Assistant Professor
Department of Virology
Institut Armand-Frappier
Laval-des-Rapides, Quebec, Canada

Caroline R. Astell, Ph.D.

Associate Professor Department of Biochemistry University of British Columbia Vancouver, British Columbia, Canada

Jean Bergeron, M.Sc.

Ph.D. Student
Departments of Microbiology and
Immunology
University of Montreal
Montreal, Quebec, Canada

Barrie J. Carter, Ph.D.

Chief
Laboratory of Molecular and Cellular
Biology
National Institute for Diabetes, and
Digestive and Kidney Diseases
National Institutes of Health
Bethesda, Maryland

Susan F. Cotmore, Ph.D.

Research Scientist
Department of Laboratory Medicine
Yale University Medical School
New Haven, Connecticut

Emanuel A. Faust, Ph.D.

Associate Professor Department of Biochemistry Dalhousie University Halifax, Nova Scotia, Canada

Edith M. Gardiner, Ph.D.

Postdoctoral Fellow Department of Biology Yale University New Haven, Connecticut

Simon Garzon, Ph.D.

Electron Microscopist
Departments of Microbiology and
Immunology
University of Montreal
Montreal, Quebec, Canada

Aileen Hogan, Ph.D.

Postdoctoral Fellow Developmental Biology Unit Imperial Cancer Research Fund Oxford, England

Patrick L. Iversen, Ph.D.

Assistant Professor
Department of Pharmacology and the
Eppley Institute
University of Nebraska Medical Center
Omaha, Nebraska

Shigemi Kawase, Dr. Agric.

Professor Faculty of Agriculture Nagoya University Chikusa, Nagoya, Japan

Ella Mendelson, Ph.D.

Visiting Scientist
Laboratory of Molecular and Cellular
Biology
National Institute for Diabetes, and
Digestive and Kidney Diseases
National Institutes of Health
Bethesda, Maryland

Solon L. Rhode, III, Ph.D.

Professor

The Eppley Institute and Department of Pathology and Microbiology University of Nebraska Medical Center Omaha, Nebraska Peter Tattersall, Ph.D.

Associate Professor
Departments of Laboratory Medicine and
Human Genetics
Yale University School of Medicine
New Haven, Connecticut

James P. Trempe, Ph.D.

Bethesda, Maryland

Senior Staff Fellow
Laboratory of Molecular and Cellular
Biology
National Institute for Diabetes, and
Digestive and Kidney Diseases
National Institutes of Health

CONTRIBUTORS

Volume II

Robert C. Bates, Ph.D.

Professor of Microbiology Department of Biology Virginia Polytechnic Institute and State University Blacksburg, Virginia

Serge Belloncik, Dr. Ing.

Head of Research Center of Virology Department of Virology Institut Armand Frappier Laval, Quebec, Canada

Jean Bergeron, M.Sc.

Ph.D. Student
Departments of Microbiology and
Immunology
University of Montreal
Montreal, Quebec, Canada

Leland E. Carmichael, Ph.D., D.V.M.

John M. Olin Professor of Virology Baker Institute for Animal Health New York State College of Veterinary Medicine Cornell University Ithaca, New York

Barrie J. Carter, Ph.D.

Chief
Laboratory of Molecular and Cellular
Biology
National Institute for Diabetes, and
Digestive and Kidney Diseases
National Institutes of Health
Bethesda, Maryland

Jan J. Cornelis, Ph.D.

Chargé de Recherche
Centre National de la Recherche
Scientifique
Institut National de la Santé et de la
Recherche Médicale,
Molecular Oncology Unit
Institut Pasteur Lille
Lille, France

Serge Dea, Ph.D.

Professor Center Recherche Medicine Comparee Institut Armand Frappier Laval, Quebec, Canada

Simon Garzon, Ph.D.

Electron Microscopist
Departments of Microbiology and
Immunology
University of Montreal
Montreal, Quebec, Canada

Han S. Joo, D.V.M., Ph.D.

Professor
Department of Large Animal Clinical
Sciences
University of Minnesota
St. Paul, Minnesota

Francis T. Jay, Ph.D.

Professor Department of Medical Microbiology University of Manitoba Winnipeg, Manitoba, Canada

Robert H. Johnson, Ph.D., D.V.Sc.

Associate Professor Graduate School of Tropical Veterinary Sciences James Cook University Townsville, Queensland, Australia

Shigemi Kawase, Dr. Agric.

Professor Faculty of Agriculture Nagoya University Chikusa, Nagoya, Japan

Jànos Kisary, Ph.D.

Director of Research Phylaxia Veterinary Biologicals Co. Budapest, Hungary

Austin E. Larsen, D.V.M., Ph.D.

Associate Professor Departments of Cellular, Viral, and Molecular Virology University of Utah College of Medicine Salt Lake City, Utah

Ka-Shing S. Luk, B.Sc.

Ph.D. Student
Department of Medical Microbiology
University of Manitoba
Winnipeg, Manitoba, Canada

Yasuko Matsunaga, Ph.D.

Senior Research Fellow Central Virus Diagnostic Laboratory National Institute of Health Musashimurayama, Tokyo, Japan

Thomas W. Molitor, Ph.D.

Assistant Professor Department of Large Animal Clinical Sciences University of Minnesota St. Paul, Minnesota

Keith P. Neilsen, M.Sc.

Department of Medical Microbiology University of Manitoba Winnipeg, Manitoba, Canada

Roy V. H. Pollock, Ph.D., D.V.M.

Assistant Professor of Medical Informatics Department of Clinical Sciences New York State College of Veterinary Medicine Cornell University Ithaca, New York

David D. Porter, M.D.

Professor
Department of Pathology
School of Medicine, University of
California at Los Angeles
Los Angeles, California

Jean Rommelaere, Ph.D.

Professor
Department of Molecular Biology
Université Libre de Bruxelles
Rhode-Saint-Genese, Belgium
and
Molecular Oncology Unit
Institut Pasteur de Lille
Lille, France

Fred W. Scott, D.V.M., Ph.D.

Department of Microbiology, Immunology and Parasitology Cornell Feline Health Center New York State College of Veterinary Medicine Cornell University Ithaca, New York

Günter O. Siegl, Dr.rer.nat.

Professor Institute for Hygiene and Medical Microbiology University of Bern Bern, Switzerland

Janice Roslyn Smith, Ph.D.

Research Fellow Graduate School of Tropical Veterinary Science James Cook University Townsville, Queensland, Australia

Michael J. Studdert, Ph.D.

Reader in Veterinary Microbiology Department of Veterinary Paraclinical Sciences School of Veterinary Science The University of Melbourne Parkville, Victoria, Australia

De-Ming Su

Department of Biology Fudan University Shanghai, People's Republic of China

Jacov Tal, Ph.D.

Department of Biology Ben-Gurion University Beer Sheva, Israel **Peter Tattersall**

Department of Human Genetics Yale University School of Medicine New Haven, Connecticut Helene W. Toolan, Ph.D.

Director Emeritus Helene W. Toolan Institute for Medical Research

Bennington, Vermont

TABLE OF CONTENTS

Volume I

INTRODUCTION Chapter 1 P. Tijssen PROPERTIES OF PARVOVIRUS PARTICLES Chapter 2 M. Arella, Simon Garzon, J. Bergeron, and Peter Tijssen Chapter 3 S. L. Rhode, III and P. Iversen Chapter 4 Terminal Hairpins of Parvovirus Genomes and Their Role in DNA Replication.......59 C. R. Astell Chapter 5 P. Iversen and S. L. Rhode, III Chapter 6 E. A. Faust and A. Hogan MOLECULAR BIOLOGY OF PARVOVIRUSES Chapter 7 P. Tattersall and E. M. Gardiner Chapter 8 P. Tattersall and S. F. Cotmore Chapter 9 S. F. Cotmore Chapter 10 B. J. Carter

169	
227	
255	
283	
295	

TABLE OF CONTENTS

Volume II

BIOLOGICAL PROPERTIES OF PARVOVIRUSES

Chapter 1 Tissue Tropism of Parvoviruses
Chapter 2 Persistence of Autonomous Parvoviruses In Vitro
Chapter 3 Oncosuppression by Parvoviruses
Chapter 4 Variability, Adaptability, and Epidemiology of Autonomous Parvoviruses
Chapter 5 Epidemiology of the Parvoviruses
PARVOVIRUS INFECTIONS AND DISEASE
Chapter 6 Mink Parvovirus Infections
Chapter 7 Feline Parvovirus Infection
Chapter 8 The Canine Parvoviruses
Chapter 9 Clinical and Pathological Features of Porcine-Parvovirus-Related Disease and Its Diagnosis
Chapter 10 Equine Parvovirus Infections

Chapter 11 The Rodent Parvoviruses
Chapter 12 Clinical and Pathological Features: Diagnosis of Rabbit Parvovirus Infections
Chapter 13 Clinical and Pathological Features: Diagnosis of Bovine Parvovirus Infections181 R. C. Bates
Chapter 14 Clinical and Pathological Features: Diagnosis of Avian Parvovirus Infections193 J. Kisary
Chapter 15 Human Parvovirus Infections
Chapter 16 Insect Parvovirus Diseases
SPECIAL APPLICATIONS OF PARVOVIRUSES
Chapter 17 Parvoviral Probes for Cellular Responses to DNA Damage
Chapter 18 Parvoviruses as Vectors
Chapter 19 Potential Use of Densonucleosis Viruses as Biological Control Agents of Insect Pests
Index

9.8

Chapter 1

TISSUE TROPISM OF PARVOVIRUSES

Michael J. Studdert

INTRODUCTION

Some of the factors that influence the tissue tropism, more specifically cell tropism, of autonomously replicating parvoviruses are set down in Table 1. Of the four factors listed, the most obvious are the presence of an appropriate receptor on the cell surface and a requirement of cycling cells in late S-phase. The cell tropism of a virus is a central feature of its pathogenesis. We may consider parvovirus-cell tropism in the context of pathogenesis at four, somewhat overlapping, levels: (1) molecular, (2) cellular, (3) animal, and (4) population. Some remarks will be made about tropism and pathogenesis at each of these levels, although most will be said about the cell and animal. The remarks are particularly influenced by our studies of the most dramatic, naturally occurring diseases caused by parvoviruses: the long-recognized, worldwide, frequently fatal disease feline panleukopenia and the remarkably similar, recently emerged (1978) canine parvovirus disease. Recent reviews of canine and feline canine parvovirus diseases have been published^{1,3} and may be consulted for more detailed aspects of the disease and extended bibliographies. More specific and detailed accounts of the feline and canine as well as other parvovirus diseases follow in this volume. The intention here is to use aspects of our understanding of the feline and canine diseases to provide a general account of parvovirus tropism and pathogenesis and to identify some of the deficiencies in coming to a more complete understanding of these matters.

MOLECULAR ASPECTS OF CELL TROPISM

A detailed description of the genes, the gene products, and the mode of replication of parvovirus DNA is in part a description of the molecular pathogenesis of the virus, and these aspects, which are now understood in increasing detail, are reviewed elsewhere in the volume. Corollaries to these events in the viral replication cycle are to define in molecular terms the mechanisms whereby the entering single-stranded virion DNA molecule usurps the cellular machinery and the consequences in terms of loss of cell function. It is also necessary to define the kinetics of the production of viral specific antigens at the cell surface that are targets for one of several immune cytolytic mechanisms which probably also influence pathogenesis.

These notions of viral pathogenesis are of course applicable to any virus; they are mentioned, perhaps somewhat unnecessarily, at the outset of this review simply to draw attention to the oft-quoted belief that because of the "simplicity" of parvoviruses — a "simplicity" exceeded only by viroids and perhaps the scrapie agent — it should be possible in the coming years to specify in quite complete and precise terms the molecular events in the viral replication cycle and the consequences of these events for the cell. We shall note, however, that many aspects of *in vivo* pathogenesis, which are the emphasis of this chapter, are not so accessible to study. Indeed, experimental *in vivo* models for studying the pathogenesis of the feline and canine parvoviruses have generally been only partially successful. There is a complex set of factors that are poorly defined, in addition to the role of the virus itself, and a susceptible animal, that determine and influence tropism and pathogenesis.

A critical feature of the molecular basis for parvovirus tropism and pathogenesis about