ELECTROMAGNETICS JOHN D. KRAUS Fourth Edition

ELECTROMAGNETICS

Fourth Edition

John D. Kraus

Director, Radio Observatory
Taine G. McDougal Professor Emeritus
of Electrical Engineering and Astronomy
The Ohio State University

McGraw-Hill, Inc.

New York St. Louis San Francisco Auckland Bogotá Caracas Lisbon London Madrid Mexico Milan Montreal New Delhi Paris San Juan Singapore Sydney Tokyo Toronto

Other books by John D. Kraus:

ANTENNAS, 2d ed. (McGraw-Hill), 1988 RADIO ASTRONOMY, 2d ed. (Cygnus-Quasar), 1986 BIG EAR (Cygnus-Quasar), 1976 OUR COSMIC UNIVERSE (Cygnus-Quasar), 1980

This book was set in Times Roman.

The editors were Lyn Beamesderfer and James W. Bradley; the production supervisor was Friederich W. Schulte.

The cover was designed by Nadja Furlan-Larbek.

New drawings were done by Academy Artworks.

R. R. Donnelley & Sons Company was printer and binder.

This book is printed on recycled paper containing a minimum of 50% total recycled fiber with 10% postconsumer de-inked fiber.

ELECTROMAGNETICS

Copyright © 1992, 1984, 1973, 1953 by McGraw-Hill, Inc. All rights reserved. Copyright renewed 1981 by John D. Kraus. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher.

3 4 5 6 7 8 9 0 DOC DOC 9 0 9 8 7 6 5 4 3 2

ISBN 0-07-035621-1

Library of Congress Cataloging-in-Publication Data

Kraus, John Daniel, (date).

Electromagnetics/John D. Kraus.-4th ed.

p. cm.

Includes index.

ISBN 0-07-035621-1

1. Electromagnetic theory. I. Title.

OC661.K72

1991

530.1'41—dc20

90-38964

ELECTROMAGNETICS

McGraw-Hill Series in Electrical Engineering

Consulting Editor

Stephen W. Director, Carnegie-Mellon University

Circuits and Systems
Communications and Signal Processing
Control Theory
Electronics and Electronic Circuits
Power and Energy
Electromagnetics
Computer Engineering
Introductory
Radar and Antennas
VLSI

Previous Consulting Editors

Ronald N. Bracewell, Colin Cherry, James F. Gibbons, Willis W. Harman, Hubert Heffner, Edward W. Herold, John G. Linvill, Simon Ramo, Ronald A. Rohrer, Anthony E. Siegman, Charles Susskind, Frederick E. Terman, John G. Truxal, Ernst Weber, and John R. Whinnery

Electromagnetics

Consulting Editor

Stephen W. Director, Carnegie-Mellon University

Dearhold and McSpadden: Electromagnetic Wave Propagation

Goodman: Introduction to Fourier Optics

Harrington: Time-Harmonic Electromagnetic Fields

Hayt: Engineering Electromagnetics

Kraus: Electromagnetics

Paul and Nasar: Introduction to Electromagnetic Fields

Plonus: Applied Electromagnetics

Also Available from McGraw-Hill

Schaum's Outline Series in Electronics & Electrical Engineering

Most outlines include basic theory, definitions, and hundreds of solved problems and supplementary problems with answers.

Titles on the Current List Include:

Acoustics

Basic Circuit Analysis

Basic Electrical Engineering

Basic Electricity

Basic Equations of Engineering

Basic Mathematics for Electricity and Electronics

Digital Principles, 2d edition

Electric Circuits, 2d edition

Electric Machines and Electromechanics

Electric Power Systems

Electromagnetics

Electronic Circuits

Electronic Communication

Electronic Devices and Circuits

Electronics Technology

Feedback and Control Systems, 2d edition

Microprocessor Fundamentals, 2d edition

Transmission Lines

Schaum's Solved Problems Books

Each title in this series is a complete and expert source of solved problems containing thousands of problems with worked out solutions.

Related Titles on the Current List Include:

3000 Solved Problems in Calculus

2500 Solved Problems in Differential Equations

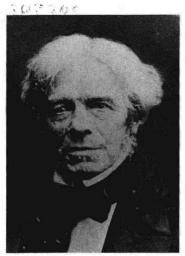
2000 Solved Problems in Electronics

3000 Solved Problems in Electric Circuits

3000 Solved Problems in Linear Algebra

2000 Solved Problems in Numerical Analysis

3000 Solved Problems in Physics


Available at your College Bookstore. A complete list of Schaum titles may be obtained

by writing to: Schaum Division

McGraw-Hill, Inc.

Princeton Road, S-1

Hightstown, NJ 08520

To Michael Faraday, who performed the pioneering experiments, . . .

To James Clerk Maxwell, who used them to formulate the all-encompassing theory of electromagnetics, . . . and

To **Heinrich Hertz**, whose experiments validated the theory and gave us radio.

ABOUT THE AUTHOR

John D. Kraus was born in Ann Arbor, Michigan, in 1910 and received his Ph.D. degree in physics from the University of Michigan in 1933. He then did research in nuclear physics with Michigan's newly completed 100-ton cyclotron until World War II when he worked on the degaussing of ships for the U.S. Navy and on radar countermeasures at Harvard University. After the war he came to the Ohio State University where he is now Director of the Radio Observatory and McDougal Professor (Emeritus) of Electrical Engineering and Astronomy.

Dr. Kraus is the inventor of the helical antenna, the workhorse of space communication, the corner reflector, used by the millions for television reception, and many other types of antennas. He designed and built the giant Ohio radio telescope known as "Big Ear." He is the holder of many patents and has published hundreds of scientific and technical articles. He is also the author of the widely used classic textbooks *Antennas* (McGraw-Hill, 1950, second edition 1988), considered to be the "Antenna Bible"; *Electromagnetics* (McGraw-Hill, 1953, second edition 1973, third edition, 1984, and this, the fourth edition, 1992); and *Radio Astronomy* (McGraw-Hill, 1966, second edition, Cygnus-Quasar, 1986). In addition he has written two popular books *Big Ear* (1976) and *Our Cosmic Universe* (1980).

Dr. Kraus received the U.S. Navy Meritorious Civilian Service Award in 1946. He was made a Fellow of the Institute of Electrical and Electronic Engineers (IEEE) in 1954 and was elected to the National Academy of Engineering in 1972. He received the Sullivant Medal, Ohio State University's top award, in 1970; the Outstanding Achievement Award of the University of Michigan in 1981; the Distinguished Achievement Award of the IEEE Antennas and Propagation Society in 1985; and three IEEE medals: Centennial in 1984, Edison in 1985, and Heinrich Hertz in 1990.

Currently, Dr. Kraus is teaching while serving as consultant to government and industry.

This new edition is an extensive revision, presenting the basic elements of electromagnetics for the 1990s. Topics are developed in easy steps from the simplest cases to more general ones with the theory applied to numerous practical situations.

A brief history of electromagnetics sets the stage in *Chapter 1* followed by sections on dimensions and units. Chapter 1 also includes a new, concise treatment of vector analysis, vector point relations, and coordinate systems which can introduce a student to these topics or serve as a review. *Chapter 2* presents the static electric field through atomic energy levels, line integrals, gradient and Gauss's law. It also includes new sections on the moment method (MM), the earth capacitor, and the automatic electrostatic autopilot. Gauss's law is the first of the four Maxwell equations, which we develop as we go through the book. These equations are the unifying theme of electromagnetics and are all brought together in *Chapter 11*.

Chapter 3 covers charged particles moving in electric fields with a focus on applications: the cathode-ray tube, an ink-jet printer, electrostatic precipitators and separators, electrostatic painting, static eliminators, and the xerographic copier. Chapter 4 explains electric field in dielectrics and introduces us to dipoles, dipole moments, polarization, boundary relations, transmission lines, divergence, Maxwell's equation from Gauss, and the Laplace operator. Advancing from electric fields to electric currents, we learn in Chapter 5 about Ohm's law, Kirchhoff's law, semiconductors, superconductors, lightning, grounding, and shielding. The magnetic fields of currents and their effects are covered in Chapter 6 with sections on forces, torques, moments, inductance, and Ampère's law. Many practical applications of magnetic fields are described in Chapter 7. These include cyclotron, particle separators, magnetic mirrors, motors (both rotary and linear), magnetic levitation, Hall effect, and the magnetic brake.

The phenomenon of ferromagnetism is treated in *Chapter 8* with sections on hysteresis, permanent magnets, lifting magnets, magnetic energy, and the universality of a field map to electric magnetic and current cases. Dipoles, loops, and solenoids are also compared.

Chapter 9 presents Laplace's equation and its application to boundary value problems using analytical, numerical, computer, and analog techniques, with many examples, including a semiconductor junction.

With Chapter 10, we progress from static fields to time-changing electric and magnetic fields. This chapter covers Faraday's law, induction, Maxwell's equation from Faraday, Stokes's theorem, self- and mutual inductance, eddy currents, Maxwell's equation from Ampère, displacement current, dielectric hysteresis, and boundary relations with a new section on push-pull propulsion of magnetically levitated (Maglev) vehicles. Chapter 11 brings Maxwell's equations, as developed in earlier chapters, together and illustrates the interrelation of field and circuit theory.

Waves and transmission lines, with sections on coaxial, two-wire and field-cell lines, the terminated line, line matching, the Smith Chart, line transformers, bandwidths, S parameters, traveling and standing waves, absorbers, the axon, and shielding are discussed in Chapter 12. Chapter 13 gives a concise treatment of wave polarization, reflection, refraction, and diffraction with sections on Huygen's principle, physical optics, and geometrical optics.

Waveguides and resonators, are covered in *Chapter 14* with discussions on rectangular and cylindrical hollow waveguides, open guides, fiber optics guides, and cavity resonators. This chapter includes new sections on electromagnetic compatibility chambers, microwave ovens, and dielectric resonators. *Chapter 15* gives a condensed presentation of basic antenna theory with application to the short, $\lambda/2$ and $3\lambda/2$ dipoles and includes a new section on 22 practical antennas with data sufficient to design most of them. The chapter concludes with radio links, the Friis formula, radar, antenna temperature, signal-to-noise ratio, and remote sensing. Finally, the *Appendix* has some useful tables, references, and answers to starred problems.

There are over 1000 problems ranging from drill to very practical which cover all levels of difficulty. More than 90 percent of the problems are new. The problems constitute an important extension of the text, many topics being included that are not in the main text.

With the problem sets or in *Appendix B* are 15 computer programs for running on PCs (personal computers). The programs include V-LEVEL (potentials of charge configurations); V-COLOR (potentials in full color display); REPLA (repetitive Laplace) for potentials in a conducting enclosure; POST (potentials around a post projecting into a previously uniform field); BOUNCING PULSES and TRAVELING WAVES (on a transmission line); TERMINATED LINE (impedance along a line); LOSSY LINE (voltage and phase on a lossy line); SMITH CHART; and ARRAYPATGAIN (pattern and gain of antenna arrays). Appendix B includes a directory of the computer programs. All the programs in the book are on a diskette which accompanies a solutions manual available to instructors. I hope instructors will make the diskette or copies of it available to students.

Since many students now have PCs or access to one, or to computer terminals connected to larger computers, these easy-to-run programs can provide a valuable instructional supplement to the text. Potential plots, field maps, waves on lines, and antenna patterns are so easily shown on a screen that many different variations

can be quickly tried, supplementing the book examples with dozens more over a wide range of parameters and providing insights that would be very difficult to obtain otherwise.

Although an objective of problem solving is to obtain an answer, I have endeavored to also provide insights as to how many of the problems relate to engineering situations in the real world. Thus, problems involving engineering feasibility and/or design of practical devices may have multiple or indefinite solutions. Few real-world engineering problems have a single exact answer due to the compromises and trade-offs required in practice.

There are many ways of adapting this new edition to a variety of course requirements. Many sequences for courses ranging from 10 to 30 weeks in length are listed in the solutions manual available to instructors. As prerequisites, the student is assumed to have a knowledge of introductory physics and mathematics through differential and integral calculus.

Not only is electromagnetics basic to a complete electrical engineering curriculum, but it is three-dimensional. Much of electrical engineering is one- or two-dimensional. However, we live in a three-dimensional world, and one of the great values of electromagnetics is that it makes one familiar with 3-D concepts. These are introduced early in the book.

It would not have been possible to prepare this edition without the dedicated assistance of Dr. Erich Pacht, who has been involved in all aspects of the editorial process. He also wrote one of the computer programs and checked all the others. Kristine Hall has provided unusually capable assistance on the manuscript preparation. I have also benefited from the comments and suggestions of many others who have been kind enough to read sections or entire chapters. These include Professor Jim Akers of Mississippi State University; Richard Mallozzi, Harvard University junior; Professors Steven Bibyk, Stuart Collins, Robert Garbacz, Daniel Hodge, Professors Benedikt Munk, William Peake, Jack Richmond, and Roger Rudduck of The Ohio State University; Paul Khanna of Avantek, Inc.; Maynard Hill of H-Cubed Corp.; and the following reviewers for McGraw-Hill Inc.: Robert Engelken, Arkansas State University; Ronald J. Gutmann, Rensselaer Polytechnic Institute; Herbert Hacker, Duke University; Glenn S. Smith, Georgia Institute of Technology; and James C. Rogers, Michigan Technological University. Professor Akers also supplied two computer programs. Three programs were kindly provided by Harry Shamansky of The Ohio State University Electro-Science Laboratory with the assistance of Weihung Lin. The McGraw-Hill editors, Lyn Beamesderfer and James W. Bradley were also most helpful. Thus, the book is a cooperative team effort of many persons.

Finally, I thank my wife, Alice, for her patience, encouragement, and dedication through all the years of work it has taken.

John D. Kraus

ELECTROMAGNETICS

CONTENTS

	Preface	xvii
1	Introduction	1
1-1	Introduction	1
1-2	Electromagnetics: Its History and Importance	
1-3	Dimensions and Units	2 5 6
1-4	Fundamental and Secondary Units	6
1-5	How to Read the Symbols and Notation	8
1-6	Equation and Problem Numbering	10
1-7	Dimensional Analysis	10
1-8	Vector Analysis	11
1-9	Introduction to Coordinate Systems	27
1-10	Summary	35
	Problems	36
2	The Static Electric Field	39
2-1	Introduction	39
2-2	The Force between Point Charges and Coulomb's Law	40
2-3	Idealness and Stationess	48
2-4	Electric Field Intensity, E	48
2-5	Positiveness, Right-Handedness, and Outwardness	52
2-6	The Electric Field of Several Point Charges and the Principle	52
	of Superposition of Fields	52
2-7	Charge Distributions	54
2-8	The Electric Scalar Potential, V	58
2-9	The Electric Scalar Potential as a Line Integral of the Electric Field	61
2-10	Electric Field Streamlines and Equipotential Contours;	
	Orthogonality	64
2-11	Field Mapping	73
2-12	Electric Potential of Charge Distributions and the Principle	
	of Superposition of Potential	78
		·

X CONTENTS

2-13	Line Charge Distribution by the Moment Method (MM)	81
2-14	The Electric Field as the Gradient of the Electric Potential	84
2-15	Electric Flux	86
2-16	Electric Flux over a Closed Surface; Gauss's Law;	
	a Maxwell Equation	89
2-17	Single Shell of Charge	91
2-18	Single Conducting Shell; The Faraday Cage	93
2-19	Capacitors and Capacitance	95
2-20	The Earth Capacitor; The Automatic Electrostatic Pilot	98
2-21	Summary	103
	Problems	104
3	Charged Particles Moving in Electric Fields	111
3-1	Introduction	111
3-1	Moving Charges in Electric Fields	111
3-3	The Cathode-Ray Tube (CRT)	114
3-4	Ink-Jet Printer	117
3-5	Corona	118
3-6	Electrostatic Precipitators	119
3-7	Electrostatic Painting	125
3-8	Sandpaper and Carpets Made Electrostatically	126
3-9	Electrostatic Separators	126
3-10	The Electrostatic Xerographic Copying Machine	127
3-11	Static Eliminators	128
3-12	Summary	130
	Problems	130
4	The Static Electric Field in Dielectrics	132
4-1	Introduction	132
4-2	Homogeneity, Linearity, and Isotropy	132
4-3	Dielectrics, Permittivity, and Table of Permittivities	133
4-4	The Electric Field in a Dielectric	133
4-5	The Electric Dipole and Electric-Dipole Moment	134
4-6	Polarization	137
4-7	Boundary Relations	141
4-8	Table of Boundary Relations	146
4-9	Capacitors with Dielectric	147
4-10	Dielectric Strength	149
4-11	Energy in a Capacitor and Energy Density	149
4-12	Coaxial Transmission Line	153
4-13	Two Lines of Charge	155
4-14	Two-Wire Transmission Line	157
4-15	Single-Wire Transmission Line	158
4-16	Flux Tubes and Field Cells	159
4-17	Heart Dipole Field	166
4-18	Divergence of the Flux Density D	166
4-19	Maxwell's Divergence Equation from Gauss's Law	170
4-20	Divergence Theorem	172

		CONTENTS	XI
4-21	Divergence of D and P in a Capacitor		172
4-22	The Laplacian Operator; Poisson's and Laplace's Equations		175
4-23	Summary		176
. 20	Problems		177
5	The Steady Electric Current		181
5-1	Introduction		181
5-2	The Electric Current; Current Density		182
5-3	Resistance and Ohm's Law		183
5-4	Power Relations and Joule's Law		185
5-5	The Electric Circuit		186
5-6	Resistance, Resistivity, Conductance, Conductivity,		
	and Superconductivity		186
5-7	Ohm's Law at a Point		189
5-8	Dielectrics, Conductors, and Semiconductors		190
5-9	Table of Conductivities		192
5-10	Kirchhoff's Voltage Law and the Difference between Potential		
	and EMF		194
5-11	Tubes of Current		198
5-12	Kirchhoff's Current Law		199
5-13	Divergence of J and Continuity Relations for Current		200
5-14	Current and Field at a Conductor-Insulator Boundary		202
5-15	Current and Field at a Conductor-Conductor Boundary		204
5-16	Current Mapping and the Resistance of Simple Geometries; Conductor Cells		205
5-17	Laplace's Equation for Conducting Media		209
5-18	Lightning, Grounding, and Atmospheric Conductivity		211
5-19	Summary		214
	Problems		215
6	The Static Magnetic Field		
	of Steady Electric Currents		219
6-1	Introduction		219
6-2	Force on Current-Carrying Wire in a Magnetic Field		220
6-3	The Magnetic Field of a Current-Carrying Element;		
	The Biot-Savart Law		223
6-4	The Force between Two Parallel Linear Conductors; Definition		
	of the Ampere		227
6-5	Magnetic Flux ψ_m and Magnetic Flux Density B		228
6-6	Magnetic Flux over a Closed Surface; Gauss's Law (a Maxwell Equation)		229
6-7	Torque on a Loop; Magnetic Moment		230
6-8	The Solenoid		231
6-9	Inductors and Inductance		233
6-10	Inductance of Simple Geometries		235
6-11	Ampère's Law and H		237
6-12	Ampère's Law Applied to a Conducting Medium and Maxwell's		
	Equation		241

xii contents

6-13	Magnetostatic Potential U and MMF F	241
6-14	Field Cells and Permeability	245
6-15	Curl	248
6-16	Maxwell's First Curl Equation	254
6-17	Summary of Operations Involving Del (∇)	254
6-18	A Comparison of Divergence and Curl	256
6-19	The Vector Potential	258
6-20	Uniform Field Devices	263
6-21	Summary	263
	Problems	265
7	Conductors and Charged Particles Moving	
	in Static Magnetic Fields	271
7-1	Introduction	271
7-2	Charged Particles Moving in a Static Magnetic Field	271
7-3	Cathode-Ray Tube, Magnetic Deflection	275
7-4	The Cyclotron	277
7-5	Mass Spectrograph or Particle Separator	281
7-6	Magnetic Mirrors and Bottles	282
7-7	D'Arsonval Meter	284
7-8	Rotary Motor	285
7-9	Linear Motors	286
7-10	Magnetic Levitation (Maglev)	288
7-11	Hall-Effect Generator	290
7-12	Moving Conductors in a Static Magnetic Field	292
7-13	Moving Conductor Generators	293
7-14	The Magnetic Brake	296
7-15	Summary	297
	Problems	297
8	The Static Magnetic Field	
	of Ferromagnetic Materials	301
8-1	Introduction	301
8-2	The Atomic Loop	301
8-3	Magnetic Dipoles, Loops, and Solenoids	304
8-4	Magnetic Materials	308
8-5	Relative Permeability	310
8-6	Magnetic Dipoles and Magnetization	311
8-7	Uniformly Magnetized Rod and Equivalent Air-Core Solenoid	313
8-8	The Magnetic Vectors B, H, and M	316
8-8a	Magnetized Rod: Pole and Current Models	319
8-9	Energy in an Inductor and Energy Density	326
8-10	Boundary Relations	328
8-11	Ferromagnetism	332
8-12	Magnetization Curves	334
8-13	Hysteresis	340
8-14	Energy in a Magnet	342
8-15	Permanent Magnets	344

8-16	Table of Permanent Magnetic Materials	346
8-17	Demagnetization	346
8-18	The Magnetic Circuit; Reluctance and Permeance	347
8-19	Magnetic Field Mapping; Magnetic Field Cells	352
8-20	Comparison of Field Maps in Electric, Magnetic, and Current Cases	357
8-21	Gapless Circuit	361
8-22	Magnetic Circuit with Air Gap	363
8-23	Magnetic Gap Force	365
8-24	Permanent Magnet with Gap	366
8-25	A Comparison of Static Electric and Magnetic Fields	367
8-26	Comparison of Electric and Magnetic Relations Involving	
	Polarization and Magnetization	367
8-27	Do Magnetic Monopoles Exist?	369
8-28	Summary	370
	Problems	370
9	Field Mapping by Analytical, Numerical,	
	Computer, and Analog Techniques	376
0.4		
9-1	Introduction	376
9-2	Laplace's Equation in Rectangular Coordinates;	277
0.0	Separation of Variables	377
9-3	Example 9-1: The Parallel-Plate Capacitor	379
9-4	Uniqueness	381
9-5	Repetitive Laplace Solution	383
9-6	Example 9-2: The Infinite Square Trough with Lid	201
0.7	by Repetitive Laplace	384
9-7	Example 9-3: Infinite Square Trough with Different Potentials on	207
0.0	All Four Sides	387
9-8	Analog-Computer Solution of Laplace's Equation Using Kirchhoff's	200
0.0	Law	389 391
9-9	Example 9-4: Conducting Strip between Two Conducting Plates	391
9-10	Solution of Laplace's Equation in Cylindrical and Spherical	398
9-11	Coordinates	399
9-11	Example 9-5: Coaxial Line	402
9-12	Poisson's Equation Example 9-6: Parallel-Plate Capacitor with Space Charge	403
9-13 9-14	Example 9-6. Faranei-Flate Capacitor with Space Charge Example 9-7: Semiconductor Junction	406
9-14 9-15		410
9-13 9-16	Theory of Images Example 9-8: Charged Cylindrical Conductor over Flat Conducting	410
9-10	Ground Plane	410
9-17	Example 9-9: Current-Carrying Conductor over Flat Conducting	410
J-1 /	Ground Plane	412
9-18	Summary	413
7-10	Problems	413
	1 TOOLOMB	713
10	Time Changing Electric and Magnetic Fields	420
10-1	Introduction	420
10-2	Faraday's Law	421

xiii

CONTENTS