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Preface

Categories and functors, it has often been repeated, were introduced
thirty years ago by Eilenberg and MacLane [11] to understand and
study certain constructions in algebraic topology. It was soon realized
that they provided a useful language in which to treat large tracts of
mathematics, ranging as far afield as algebraic geometry on the one
hand [19] and automata theory [10] on the other. Thus category theory
was developed with the specific needs of certain of these fields in mind.
Indeed, it is fair to say that many of the most significant contributions
came from mathematicians, expert in one or another area, who forged
the new theory to their own use. But as the discipline gained momen-
tum, it started generating internal problems of its own, and an ever
increasing band of mathematicians who worked on them became known
as categorists. In this respect the situation resembles that of group
theory. After people had been working with permutation groups, sub-
stitution groups, transformation groups for decades, the notion of ‘ab-
stract groups’ evolved during the third quarter of last century. This
general concept rapidly made clear why the older theories had many
features in common. In time, however, questions began to be asked in
pure group theory which, as everyone knows, were not always easy to
answer.

In this book we do not lose sight of the origins of the subject:
categories are there to make different topics more transparent by
revealing common underlying patterns. This is particularly true of the
notion of adjoint functor which is introduced at an early stage and
remains a central theme throughout the book. In view of applications,
we have also stuck to the traditional description of a category as consis-
ting of objects and morphisms, rather than as just morphisms with
certain operations, sometimes favoured by ‘pure’ categorists.

The material in the first two chapters is mostly standard, but the
arrangement perhaps is not. In chapter 1 representable and adjoint
functors straightaway take the stage and are used in our treatment of
products and limits. The latter owes much to Lambek [23]. Throughout,
many examples and exercises should convince the reader that he is
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Preface

doing ‘real’ mathematics — albeit a rather superficial part of it — and not
just building castles in the air. Only in chapter 2 do we get acquainted
with monomorphisms and epimorphisms, kernels and cokernels, which
feature right at the beginning of most texts, and we gradually introduce
more structure in our categories. Thus we pass from additive and exact
categories to abelian and Grothendieck categories. We could not resist
presenting the pretty juggling of axioms defining an abelian category,
mainly following D. Puppe [34]. Our treatment of Grothendieck cate-
gories is frankly utilitarian, geared to the needs of homological algebra;
our account has benefited from Popescu [33].

Homological algebra also arose out of algebraic topology when its
practitioners began to consider homology groups rather than just Betti
numbers. Essentially it deals with derived functors; the treatise by
Cartan-Eilenberg [9] was followed by those of MacLane [25] and Hil-
ton-Stammbach [20]. Chapter 3 presents the elements of that theory,
but without going at all into applications. As opposed to these books,
where the theory is set up for modules and it is then remarked as an
afterthought that it also carries through for abelian categories, we work
with these straightaway as in Mitchell’s book [29]. We first present the
theory of Yoneda extensions in a given abelian category. From these we
build a large new category and by extending a given functor from the
original category to the new category we obtain its sequence of satellites
in one fell swoop. Thus the Kan extension theorem yields an existence
theorem for satellites. This elegant method was suggested by P. Gabriel
in his review of Mitchell’s book [15]. I am grateful to him for telling me
about it back in 1968. The large category involving the Ext’s has the
additional advantage that the additivity of these functors follows very
easily, a fact also noticed by Brinkmann [7] in a similar setting. Our
treatment of derived functors is more conventional; it follows the lines
laid down by Grothendieck [18]. We do not discuss spectral sequences.

The fourth and final chapter deals with sheaves and their cohomology.
This is an important topic in its own right, but also one in which adjoint
functors are employed to great advantage. The cohomology of sheaves
of modules displays the techniques developed in the chapter on
homological algebra. Applications of sheaf cohomology are manifold, in
various fields of mathematics. They are not touched upon here; only the
elements of the theory are presented. For a more extensive treatment
the reader is referred to the monographs [17], [42] and [6].

In some recent books on categories, the author explains in his preface
that he intends to write a textbook as well as a work of reference, for
students as well as mature mathematicians. This makes four objectives
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in all, which seems a tall order to fill. So let me state explicitly that this
book is meant as a textbook, not a monograph, treatise or work of
reference. I have had in mind students rather than mature mathemati-
cians, learners rather than experts. Even so, the wisdom of publishing as
a book notes from a course given seven years ago is legitimately open to
question. The subject has rapidly developed in the meantime, but I
believe that most of the material in this book should still be considered
basic. To my mind, the most important developments have been
nonabelian homological algebra and the theory of topoi. In both fields,
an authoritative treatise still remains to be written; see however [35],
[1], and [43] respectively. For both subjects, certain parts of this book
form a useful if not absolutely necessary preliminary.

As already mentioned, the book arose out of a course, given at
Utrecht University during the first semester of 1968/1969, followed by
a seminar. Notes of the course were taken by A. G. van Asch and W. L.
J. van der Kallen. In the seminar, S. H. Nienhuys-Cheng and J. W.
Nienhuys exposed sheaves and their cohomology. Notes of their lectures
were taken by W. H. Hesselink. To all these people the original Dutch
notes, put out by Utrecht University in 1970, owe much. Dr Hesselink
moreover has helped considerably with the revision of the fourth chap-
ter for the present edition. My colleague Dr C. J. Penning of the
University of Amsterdam undertook the translation. However, his con-
tribution has been far greater than the rendering of the text into English.
He made many suggestions and revisions and the final form was decided
upon during frequent discussions, in which he often managed to boost
my flagging morale. Finally I wish to thank J. Lambek for urging me to
publish these notes in the first place and for insisting when I remained
reluctant; F. Oort for discouraging and P. Gabriel for encouraging the
project. All these people share in the merits, if any, of the final result;
but only the author is to blame for its shortcomings. And now, gentle
reader, bring along an open mind and judge for yourself.

J.R.S.
Utrecht
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1

General concepts

1.1 Categories

1.1.1 Definition A category C is a system of morphisms and
objects. We say that f is a morphism in C from the object A to the object B
and write f: A— B or A— B. The following conditions should be
satisfied.

(i) For each morphism f in C there are unique objects A and B in C
such that f: A — B.

(ii) For each pair of objects A and B in C the class of morphisms f
such that f: A — B is a set (A, B). This set may be empty.

(iii) For all objects A, B and C in C there is a mapping (called com-
position or product) (B, C)X (A, B)— (A, C) which assigns to a pair
Tg, [, with ge (B, C) and fe (A, B), the product gfe (A, C).

(iv) Existence of identities: for every object A in C there is a mor-
phism 1,4: A — A with the property that for every object C in C and for
every couple of morphisms f: A — C and g:C — A we have f1,=fand
lAg =g

(v) Associativity: for objects A, B, C and D and morphisms
f:A— B, g: B— C and h: C = D in C we have (hg)f = h(gf).

Comments This definition is abstracted from the case that
objects are sets and morphisms are mappings. In the abstraction objects
are not necessarily sets, nor are morphisms necessarily mappings. The
morphisms are the essential ingredients of the theory; the objects are of
minor importance.

ad (i). Whether the statement f: A — B is true or untrue is given
together with the category. It is a statement within this category.

ad (ii). Set theory is taken to be known, in particular the difference
between class and set. We review this point briefly. A class is not a set if
it is bigger than every set. For instance the class of all sets is larger than
every set and hence is not a set. If a class K is not larger than a given set
X, then K itself is a set. Big sets can be constructed by taking the
cartesian product [];c; A; of sets A;, where the index set I is also a set. In
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1 General concepts

this book we take a rather naive view of these matters since we are not
dealing with foundations. A more careful discussion may be found in
[26].

ad (iii). When there is danger of confusion we sometimes specify the
category in which morphisms are considered and write (A, B)c. For
similar reasons we occasionally write the composition of f and g as g f.

ad (iv). The identity morphisms are unique. For the existence of two
such identity morphisms 1,4 and e for an object A implies 14 =14e4 =
€A.

Notation Instead of ‘A is an object in the category C’ we write
A eC. This does not therefore have the meaning it has in set theory,
since C need not be a set.

1.1.2 Examples of categories (a) Sets. This is the system con-
sisting of sets and mappings. We agree that for each set X there is a
unique map going from the void set & to X. Caution: for Y= Z we
distinguish between f: X — Y and g: X — Z, even when f(x)= g(x) for
all elements x of X, in order to comply with axiom (i).

(b) Sets,. The category of sets with base-points. Objects are nonvoid
sets V with a given point *y. Morphisms are mappings that map base-
points to base-points.

(c) Top. This is the category of topological spaces. Objects are
topological spaces and morphisms are continuous mappings. Hausd is
the category of Hausdorff spaces.

(d) Topy. As above, with base-points.

(e) Gr. Groups with group-homomorphisms.

(f) Ab. Abelian groups with group-homomorphisms.

(g) V. The category of vector spaces over a given field k with linear
mappings.

(h) Rg. This is the category of rings with ring-homomorphisms. Rings
are supposed to have an identity element and ring-homomorphisms are
supposed to map the identity element to the identity element. The
smallest ring consists of only one element.

(i) CRg. Commutative rings and ring-homomorphisms.

(/) Mr. R is a fixed ring. This is the category of right R-modules.
The morphisms are R-linear mappings. The modules should be right
unitary: x1=x for all elements x of M € Mg. Analogously, kM is the
category of left R-modules.

(k) CR-alg. This is the category of commutative R -:algebras with
algebra-homomorphisms. The algebras are supposed to have an identity
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1.1 Categories

element and the algebra-homomorphisms should transform identity
element to identity element.

() TopGr. Topological groups and continuous group-homomor-
phisms.

(m) Let I be a preordered class. A category I is constructed by taking
the elements of I as objects. The set of morphisms (i, j) from i to j is
empty unless i <j in which case (i, j) is the set consisting of one element.

(n) Let G be a group. The category G is the category with single
object G and with morphisms all left multiplications.

(o) Let C be a category. The dual category C° is defined as follows: the
objects and morphisms of C and C° are the same but the morphisms of
C° run ‘in the opposite direction’ (arrows are reversed); in other words,
for every pair of objects A and B we have (A, B)c=(B, A)c. For
fe(A, B)c we write f°e (B, A)c. In the case when ge (B, C)c, com-
position in C° is defined by f°g° = (gf)°.

(p) Let A and B be categories. The product category AXB is
defined as follows. Objects are pairs "A, B of objects with A € A and
B € B. Morphisms are pairs " f, g7 of morphisms with f a morphism in A
and g in B. The product of any number of categories is defined similarly.

(q) Let C be a category. One defines a category C? in the following
way. Objects of C” are the morphisms of C. Morphisms of C? are certain
pairs of morphisms of C. For f: A— B and g: C — D in C, the pair
Ca, B is a morphism from f to g in C? if and only if a: A — C and
B: B — D make the following diagram commutative (i.e. Bf = ga):

A
G

Note that C? is not the same category as C x C.

r
P

—_—_—
14

D=t

1.1.3 Terminology For f: A — B in a category C, A is called
the domain of f and B the range of f. We call f an isomorphism
(notation f: A= B) and A and B are called isomorphic (notation A =
B) provided there is a morphism g: B — A in C such that fg =15 and
gf = 1a. Given f, such a morphism g is necessarily unique.

A category is called small provided the class of objects is a set. In this
case the class of all morphisms is also a set since this class equals
Ua.Bec (A, B) which is a set.
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A category is called concrete provided its objects are sets endowed
with a certain structure which is conserved by morphisms. Examples (a)
to (/) are concrete categories. A precise definition will be given in the
next section.

C' is called a subcategory of a category C provided:

i) C'eC=>C'eCforall C’';

(ii) (A, B)c < (A, B)c for all A, BeC';

(i) 1) =(1c)c

C' is called a full subcategory of C provided it is a subcategory with the
stronger condition:

(ii) (A, B)c=(A, B)cforall A and BeC'.

For example Ab is a full subcategory of Gr. The category of all metric
spaces with isometries is not a full subcategory of Top but Hausd is.

1.2 Functors

1.2.1 Definition A covariant functor T from a category C to a
category D is a prescription which assigns to each object C € C an object
TC € D and to each morphism fe (A, B)c a morphism Tfe(TA, TB)p
such that the following conditions are satisfied:

(i) forall Ce C, Tlc = lTC;
(ii) T(gf)= TgTf for all fe (A, B)c and all ge (B, C)c.

Notation T: C— D or C5 D.

1.2.2 Examples (a) T: Top — Sets. T is the functor that forgets
the topological structure (the forgetful functor). Continuous maps
between topological spaces are now considered just as maps between
the underlying sets.

(b) T: Gr — Sets,. Similar to (a). In the underlying set TG for G €
Gr, take the identity element as the base-point *.

(c) Let G and H be groups and let fe (G, H)g,. Consider the cate-
gories G and H as described in 1.1.2(n). Then one may define T: G- H
by TG = H and T(A.)= Asa) (A,: left multiplication by a in G).

(d) T: Gr— Gr. For GeGr let TG =[G, G] (commutator subgroup
of G) and for fe (G, H)g, let Tf be the restriction of f to [G, G].

(e) T: Gr— Ab. For GeGr let TG = G/|G, G] and for fe (G, H)g:r
let Tf be defined by Tf(a[G, G])=f(a)[H, H], a € G.

(f) T: Topy — Gr. For (X, *)e Topy, T(X, *)=m(X, *) (fundamental
group of X with respect to the base-point *). See [39, 1.8].

(g) T: Top— Ab. T =H, (n™-singular homology functor). See [39,
4.4).



1.2 Functors

(h) Let ReRg and NeMgr. T: RM— Ab is defined by TM =
N ®grM andforf: M > Lin gMby Tf=1®f: N ®gM — N ®g L. If
R is commutative there is no distinction between left and right modules.
In that case N ®g M is an R-module and one may consider T as a
functor from gM to g M.

1.2.3 Terminology A functor T: C— D is called faithful pro-
vided Tf=Tg implies f=g; i.e. for all A, BeC the mapping
T: (A, B)c— (TA, TB)p is injective. If all these mappings are sur-
jective, the functor is called full. T is called an embedding provided T is
faithful and TA = TB implies A =B. A category C is called concrete
provided there is a faithful functor T: C — Sets. This makes precise the
description of a concrete category in 1.1.3.

Let C be any category and C €C. Consider the covariant functor
hc: C— Sets defined by hcA =(C, A) for AeC and hcf(u)=fu for
fe(A, B)c, ue(C, A)c. This functor is basic in category theory, since it
describes the composition of morphisms in the given category.

1.2.4 Definition A contravariant functor T from a category C
to a category D is defined as in 1.2.1 except that now Tfe(TB, TA)p
and condition (ii) reads T'(gf)= Tf > Tg.

An important example is the contravariant functor (for CeC)
h€:C— Sets defined by h“A =(A, C) for AeC and hf(u)= uf for
fe(A,B)c,ue(B, C)c.

The contravariant functor °: C— C° introduced in 1.1.2 (o) will be
denoted by A (the dualizing functor). Thus A is defined by AC = C and
for f: C — C’ by putting Af = f°: C' — C. For any contravariant functor
T:C—D one can consider the compositions TA:C°— D and
AT: C— D° which are covariant. In this way we often identify a con-
travariant functor 7: C — D with its covariant counterpart TA: C°— D.
When this does not give rise to confusion we sometimes drop the A.

A contravariant functor T is called full, faithful or an embedding
functor provided T'A is such.

Some more examples of contravariant functors are:

(a) H": Top — Ab with H" the n""-cohomology functor. See [28, ch.
5], [39, ch. 6].

() Spec: CRg — Top (the spectrum of a commutative ring, see [19]).

‘Functor’ on its own usually means a convariant one.

1.2.5 Multifunctors One can also consider functors of more
than one variable. Such a functor may be covariant in all variables,

5
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contravariant in all variables, or covariant in some and contravariant in
the other variables. The reader should write out the formulas for this
situation for himself. As a typical example we give the following special
case.

Let C be any category. For any two objects A and B in C denote
(A,B)cby HTA, B™. Then H is a bifunctor (functor of two variables),
contravariant in the first and covariant in the second variable. We
consider this as a covariant functor from C°XC to Sets. Explicitly,
if fA'—>A (ie. f:A—>A) and g:B— B/, then
HTf,g:HTA,B"—>HTA' B is given by HTf, gV (u)=goucf°
forue HTA,B". HTf, g7 is also denoted by (f, g)c. We often denote
H by (-, -)c.

1.3 Morphisms of functors

1.3.1 Example Let V be a vector space over a field k and V**
its double dual which in our language would be denoted by
((V, k)v,, k)v,. There is a particular linear mapping from V to V** that
has some remarkable properties which we shall describe now. First let
the linear mapping :V - V** be defined by (f)=f(v) for ve V and
fe V* (the dual of V). Now let ¢: V— W be a linear map. Let
¢**: V¥* — W** be the corresponding map between the double duals.
The following diagram is then commutative:

[
V—m—m———W

| /4.1 J—— /] 1}
PLs

i.e. "o =¢** " as the reader may easily check.

1.3.2 Definition Let C and D be categories and S and T func-
tors from C to D:

C D

il e

A morphism m from S to T is a class of morphisms n(C) in D, indexed by
the objects C of C, such that

(i) n(C): SC — TC in D for all CeC;
(ii) for every f: A — B in C the following diagram is commutative:
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1.3 Morphisms of functors

Sl il

nA) n(B)

TA———5—1T8

Example 1.3.1 shows a morphism “ from the identity functor
I: V. — V, to the ‘double dual’ functor **: V,, — V,. If one tries to
define such a morphism of functors between the identity functor and the
‘single dual’ functor * one runs into the difficulty that there is no
candidate to replace ~ for this situation. Even if one restricts to the
category of finite dimensional vector spaces over k, so that one knows
that V and V* are isomorphic, these isomorphisms depend on the
choice of bases and we cannot choose linear maps n(V): ¥V — V* such
that condition (ii) of definition 1.3.2 is satisfied. It is this difference
between the mappings “(V): V— V** and 7(V): V- V* that
motivates the name of ‘natural transformation’ for the first. It is in this
sense that the mysterious word ‘canonical’ is mostly used. Thus a mor-
phism 7 of functors is also called a natural transformation of functors. As
such, this important notion was introduced in the paper of Eilenberg
and MacLane [11], which is at the origin of category theory. Indeed, the
example of vector spaces and their double duals is theirs.

If for all the objects C of the category C the morphisms n(C) are
isomorphisms, the morphism 7 of functors is called a natural
equivalence (see 1.3.4).

1.3.3 Let C and D be categories. Consider the ‘category’ (C, D)
whose objects are the covariant functors from C to D and whose
morphisms are the functor morphisms defined in 1.3.2. Is (C,D) a
category? It is easily verified that with the obvious composition of
morphisms of functors the axioms for a category are satisfied except
perhaps axiom (ii). If the category C is small this axiom is satisfied since
for functor morphisms S, T: C— D we have

(5, Me [I (S(C), T(C))
CeC
and since the right hand side is a set; see 1.1.1 comment (ii).
If the category C is not small one sometimes may get around this
difficulty as will be seen later (1.9.8 and following).
Although not always justified we still use notation and terminology
for (C, D) as if it were a category, except, of course, in those cases where

7



1 General concepts

the missing axiom is essential. Thus we will not use, for instance, the
notation A7 for T e (C, D) since this would mean 4 ”: (C, D) — Sets.

Categories allow one to define functors between them. Natural trans-
formations between functors then occur as the morphisms in a ‘category’
where objects are the functors between two given categories. This
‘closure of category theory within itself’ is of fundamental importance,
both from a foundational point of view, and in the more sophisticated
branches of the theory. Brashly, one sometimes speaks of the ‘category’
Cat: its objects are all categories (or possibly all small categories) while
(C, D)ca: consists of all functors from C to D.

1.3.4 Remark If a morphism 7 of functors

is such that for every C € C the morphism 7(C) is an isomorphism in the
category D, the reader may easily establish the fact that then the
morphism 7 has the usual properties required for an isomorphism in the
‘category’ (C, D), and vice versa. Therefore a natural equivalence
n: S — T is also called an isomorphism from S to T. The functors S and
T are called naturally equivalent or isomorphic. We denote this by
S=T.

1.3.5 Definition Let S and T be contravariant functors from C
to D. A morphism n from § to T assigns to each C € C a morphism
1n(C) such that

(i) n(C): SC — TC for all CeC;
(ii) for f: A — B in C the following diagram is commutative:

S
7 TOWE. (—Y
By nA)
B T4

1f

In other words, n is a morphism between the covariant functors SA
and TA from C° to D.

1.3.6 Some more examples (a) There is a completely analo-
gous morphism of functors “: I — ** from the identity functor to the
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