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Dedication

Introduction

Data mining methods have been widely used for solving real bioinformatics problems.
However, the data mining process is not trivial. It consists of many steps: problem
definition, data collection, data preprocessing, modeling, and validation. For each
step, different techniques may be applied. Due to the complexity of data mining pro-
cess and data mining methods, people cannot easily use data mining tools to solve
their bioinformatics problems.

In this book, I will use an example-based method to illustrate how to apply data
mining techniques to solving real bioinformatics problems. More precisely, 1 will
use six bioinformatics problems that have been investigated in my recent research
as examples. For each example, I will describe the entire data mining process, ranging
from data preprocessing to modeling and result validation. In addition, I will describe
how to use different data mining methods to solve the same bioinformatics problem in
some examples.

In this problem-driven book, I will cover the most commonly used data mining
methods, such as frequent pattern mining, discriminative pattern mining, classifica-
tion, and clustering to show how to select one feasible data mining method to solve
a real bioinformatics problem at hand.

Audience

This book will have obvious appeal for a broad audience of computer scientists who
are interested in designing new data mining algorithms and biologists who are trying
to solve bioinformatics problems using existing data mining tools. To achieve this
objective, this book is organized with the following distinct features.

+ Providing an example-based description on the whole data mining process for bioinformatics
applications. This is distinct from method-based description, in which the chapters are orga-
nized according to different data mining techniques. Such an example-based organization is
beneficial as it may help the readers to understand how to solve a real problem at hand by
choosing proper data mining methods.

* Covering most popular data mining techniques throughout the book. Currently, there are
many data mining methods in the literature. This book covers most of them and shows their
applications in practical bioinformatics problems.

+ Giving detailed illustrations and examples of how to use different data mining techniques to
solve the same bioinformatics problem. Due to the complex nature of bioinformatics prob-
lems, the same problem can be solved using different data mining techniques. Different
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solutions vary from underlying assumptions to algorithmic details. Such kinds of examples
will not only enable the reader to understand the target problem more deeply, but also pro-
vide hints on how to apply data mining methods in his or her future bioinformatics research.
Using frontier bioinformatics problems as examples in each chapter. All the examples dis-
cussed in this book will be frontier bioinformatics problems that are under investigation by
the author and other researchers. Students who are interested in developing new and better
algorithms for these problems may use this book as a starting point.
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An overview of data mining

1.1 What's data mining?

Data mining lies at the intersection of computer science, optimization, and statistics,
and often appears in other disciplines. Generally, data mining is the process of search-
ing for knowledge in data from different perspectives. Here knowledge can refer to
any kinds of summarized or unknown information that are hidden underlying the
raw data. For instance, it can be a set of discriminative rules generated from the data
collected on some patients of a certain disease and healthy people. These rules can be
used for predicting the disease status of new patients.

In general, data mining tasks can be classified into two categories: descriptive and
predictive. Descriptive mining tasks characterize a target data set in concise, informa-
tive, discriminative forms. Predictive mining tasks conduct the induction and infer-
ence on the current data to make future predictions.

1.2 Data mining process models

Data mining is an iterative process that consists of many steps. There are already some
generic reference models on the data mining process, such as the Cross Industry Stan-
dard Process for Data Mining (CRISP-DM) process model. From a data-centric per-
spective, these models are structured as sequences of steps to transform the raw data
into information or knowledge that is practically useful. As shown in Figure 1.1, a data
mining process model typically involves the following phases: data collection, data
preprocessing, data modeling, model assessment, and model deployment.

1.3 Data collection

The first step in the data mining process is to collect the relevant data according to the
analysis goal in the applications. Generally, all the data that are helpful to achieve the
objective in the analysis should be included. The key point here is how to define and
understand the rather subjective term of “relevant data.” Its correct interpretation
highly depends on our understanding of the target problem and application back-
ground. Although this point will be further illustrated in subsequent chapters, we offer
some general remarks here:

+ In some cases, people definitely know that some kinds of data are highly relevant to the data
mining task at hand. However, the acquisition of such data is very difficult or even impos-
sible due to the device deficiency or cost. For instance, to accurately identify peptides in
mass-spectrometry-based shotgun proteomics, it is necessary to generate at least one mass

Data Mining for Bioinformatics Applications. http://dx.doi.org/10.1016/B978-0-08-100100-4.00001-6
© 2015 Elsevier Ltd. All rights reserved.



2 Data Mining for Bioinformatics Applications

Data collection  j====ccccmc e o Model deployment

Data preprocessing Data modeling Model assessment

Figure 1.1 Typical phases involved in a data mining process model.

spectrum for each peptide in the sample. However, due to the limitation of current mass spec-
trometers, it is not always possible to obtain mass spectra data that can cover all peptides
present in the sample.

* On the other hand, the inclusion of new relevant data may significantly change the models
and methods in the consequent steps of the data mining process. Furthermore, it is necessary
to check thoroughly if the use of more relevant data will boost the performance of data min-
ing procedures.

1.4 Data preprocessing

The objective of data preprocessing is twofold: (1) The real-world data are usually low
quality; hence preprocessing is used to improve the quality of data, and consequently,
the quality of data mining results. (2) In the data modeling step, some specific model-
ing algorithms cannot operate on the raw data, which should be transformed into some
predefined data formats.

There are several general-purpose data preprocessing methods: data cleaning, data
integration, data reduction, and data transformation.

Data cleaning: Real-world data are usually noisy, inconsistent, and incomplete.
Data cleaning procedures aim at removing the noise, correcting inconsistencies,
and filling in missing values in the data.

Data integration: In the data collection phase, data sets from different sources are
relevant to the analysis problem. Data integration merges data from different sources
into an integrated data set for subsequent data mining analysis. The main objective of
data integration is to reduce and avoid redundancies and inconsistencies in the result-
ing data set.

Data reduction: The purpose of data reduction is to generate a new yet smaller rep-
resentation of the original data set. Generally, the reduced data should contain approx-
imately the same information of the original data that is of primary importance to the
analysis target. The most commonly used data reduction technique includes dimen-
sion reduction (vertically, reduce the number of features) and sampling (horizontally,
reduce the number of samples).

Data transformation: Different data mining algorithms may require different forms
of data. Data transformation techniques consolidate the original data into forms appro-
priate for subsequent mining tasks. For instance, data normalization will transform
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the feature values into a predefined range such as [0.0, 1.0]. Data discretization will
replace a continuous feature with a discrete one by dividing numeric values into
intervals,

1.5 Data modeling

Before discussing the data modeling algorithms, it would be best to explain some ter-
minology. Typically, the data preprocessing step would transform the raw data into a
tabular form, in which the columns represent features/variables and rows correspond
to samples/instances. For instance, Table 1.1 is a sample data set that has eight sam-
ples and five features (class is a special feature for which we are aiming to predict
its feature value for a new given sample). The first four features are called predictive
features and the class feature is the target feature. Here the predictive features can be
symptoms of some disease, where the value of 1 indicates the existence of a symptom
and 0 indicates otherwise. Similarly, the class feature value is 1 if the corresponding
person (sample) has the disease.

1.5.1 Pattern mining

Pattern discovery is a core data mining problem, which generates a set of interesting
patterns that characterize the data sets in concise and informative forms. Initially, the
studies on pattern discovery were dominated by the frequent pattern discovery para-
digm, where only frequent patterns were explored. Currently, the issue of frequent
pattern discovery has been thoroughly investigated, rendering its limitations well
understood. Many alternative pattern discovery formulations are emerging and inves-
tigated in the literature. For example, many research efforts impose statistical signif-
icance tests over candidate patterns to control the risk of false discoveries.

Table 1.1 An example data set with eight samples and five features

Feature 1 Feature 2 Feature 3 Feature 4 Class
1 0 0 1 1 0
2 0 1 1 1 0
3 1 0 0 | 0
4 1 0 0 0 0
5 1 1 1 1 |
6 1 1 1 1 1
7 0 0 1 1 1
8 1 1 0 0 1

Here class is a special feature representing the category to which each sample belongs.



