Simulation of
Dynamic Systems
with MATLAB® and Simulink®

SECOND
EDITION

=
o

Harold Klee
= | Randal Allen

CRC Press
Taylor & Francis Group




SECOND EDITION

Simulation of

Dynamic Systems
with MATLAB® and Simulink®

Harold Klee

Randal Allen
?’ﬁ)h)\’t o Tu;!
o .
SR :{ﬁ =




MATLAB?" is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the
accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related products
does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular
use of the MATLAB" software.

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2011 by Taylor and Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
10987654321

International Standard Book Number: 978-1-4398-3673-6 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this

form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-

ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, [nc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Klee, Harold.

Simulation of dynamic systems with MATLAB and Simulink. -- 2nd ed. / Harold Klee, Randal
Allen.
p. cm.
Includes bibliographical references and index.
ISBN 978-1-4398-3673-6 (hardback)
1. Computer simulation. 2. SIMULINK. 3. MATLAB. 1. Allen, Randal, 1964- 1I. Title.

QA76.9.C65K585 2011
003".3--dc22 2010035461

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com



To Andrew, Cassie and in loving memory
of their mother and devoted wife, Laura.

Harold Klee

To Dave Lundquist and Steve Roemerman who believed in me.

Randal Allen



Foreword

As the authors point out in the preface, there is not yet extant a universally accepted definition of the
term simulation. Another approach to defining the field would be “‘the art of reproducing the behavior
of a system for analysis without actually operating that system.” The authors have written a seminal
text covering the simulation design and analysis of a broad variety of systems using two of the most
modern software packages available today. The material is presented in a particularly adept fashion
enabling students new to the field to gain a thorough understanding of the basics of continuous
simulation in a single semester and providing, at the same time, a more advanced treatment of the
subject for researchers and simulation professionals. The authors’ extensive treatment of continuous
and discrete linear system fundamentals opens the door to simulation for individuals without formal
education in a traditional engineering curriculum.

However defined, simulation is becoming an increasingly important component of curricula in
engineering, business administration, the sciences, applied mathematics, and the like. This text will
be a valuable resource for study in courses using simulation as a tool for understanding processes
that are not amenable to study in other ways.

Chris Bauer, PhD, PE, CMSP
Orlando, Florida

Simulation has come a long way since the days analog computers filled entire rooms. Yet, it is more
important than ever that simulations be constructed with care, knowledge, and a little wisdom, lest
the results be gibberish or, worse, reasonable but misleading. Used properly, simulations can give us
extraordinary insights into the processes and states of a physical system. Constructed with care,
simulations can save time and money in today’s competitive marketplace.

One major application of simulation is the simulator, which provides interaction between a
model and a person through some interface. The earliest simulator, Ed Link’s Pilot Maker aircraft
trainer, did not use any of the simulation techniques described in this book. Modern simulators,
however, such as the National Advanced Driving Simulator (NADS), cannot be fully understood
without them.

The mission of the NADS is a lofty one: to save lives on U.S. highways through safety research
using realistic human-in-the-loop simulation. This is an example of the importance simulation has
attained in our generation. The pervasiveness of simulation tools in our society will only increase
over time; it will be more important than ever that future scientists and engineers be familiar with
their theory and application.

The content for Simulation of Dynamic Systems with MATLAB® and Simulink® is arranged to
give the student a gradual and natural progression through the important topics in simulation.
Advanced concepts are added only after complete examples have been constructed using funda-
mental methods. The use of MATLAB and Simulink provides experience with tools that are widely
adopted in industry and allow easy construction of simulation models.

May your experience with simulation be enjoyable and fruitful and extend throughout your
careers.

Chris Schwarz, PhD
lowa City, lowa
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Preface

In the first article of SIMULATION magazine in the Fall of 1963, the editor John McLeod proclaimed
simulation to mean “‘the act of representing some aspects of the real world by numbers or symbols
which may be easily manipulated to facilitate their study.” Two years later, it was modified to ““the
development and use of models for the study of the dynamics of existing or hypothesized systems.”
More than 40 years later, the simulation community has yet to converge upon a universally accepted
definition. Either of the two cited definitions or others that followed convey a basic notion, namely,
that simulation is intended to reinforce or supplement one’s understanding of a system. The
definitions vary in their description of tools and methods to accomplish this.

The field of simulation is experiencing explosive growth in importance because of its ability to
improve the way systems and people perform, in a safe and controllable environment, at a reduced
cost. Understanding the behavior of complex systems with the latest technological innovations in
fields such as transportation, communication, medicine, aerospace, meteorology, etc., is a daunting
task. It requires an assimilation of the underlying natural laws and scientific principles that govern
the individual subsystems and components. A multifaceted approach is required, one in which
simulation can play a prominent role, both in validation of a system’s design and in training of
personnel to become proficient in its operation.

Simulation is a subject that cuts across traditional academic disciplines. Airplane crews spend
hours flying simulated missions in aircraft simulators to become proficient in the use of onboard
subsystems during normal flight and possible emergency conditions. Astronauts spend years train-
ing in shuttle and orbiter simulators to prepare for future missions in space. Power plant and
petrochemical process operators are exposed to simulation to obtain peak system performance.
Economists resort to simulation models to predict economic conditions of municipalities and
countries for policymakers. Simulations of natural disasters aid in preparation and planning to
mitigate the possibility of catastrophic events.

While the mathematical models created by aircraft designers, nuclear engineers, and economists
are application specific, many of the equations are analogous in form despite the markedly different
phenomena described by each model. Simulation offers practitioners from each of these fields the
tools to explore solutions of the models as an alternative to experimenting with the real system.

This book is meant to serve as an introduction to the fundamental concepts of continuous system
simulation, a branch of simulation applied to dynamic systems whose signals change over a
continuum of points in time or space. Our concern is with mathematical models of continuous-
time systems (electric circuits, thermal processes, population dynamics, vehicle suspension, human
physiology, etc.) and the discrete-time system models created to simulate them. The continuous
system mathematical models consist of a combination of algebraic and ordinary differential
equations. The discrete-time system models are a mix of algebraic and difference equations.

Systems that transition between states at randomly occurring times are called discrete-event
systems. Discrete-event simulation is a complementary branch of simulation, separate from con-
tinuous system simulation, with a mathematical foundation rooted in probability theory. Examples
of discrete-event systems are facilities such as a bank, a tollbooth, a supermarket, or a hospital
emergency room, where customers arrive and are then serviced in some way. A manufacturing plant
involving multiple production stages of uncertain duration to generate a finished product is another
candidate for discrete-event simulation.

Discrete-event simulation is an important tool for optimizing the performance of systems that
change internally at unpredictable times due to the influence of random events. Industrial engineer-
ing programs typically include a basic course at the undergraduate level in discrete-event simulation.

XV
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Not surprisingly, a number of excellent textbooks in the area have emerged for use by the academic
community and professionals.

In academia, continuous simulation has evolved differently than discrete-event simulation.
Topics in continuous simulation such as dynamic system response, mathematical modeling, differ-
ential equations, difference equations, and numerical integration are dispersed over several courses
from engineering, mathematics, and the natural sciences. In the past, the majority of courses in
modeling and simulation of continuous systems were restricted to a specific field like mechanical,
electrical, and chemical engineering or scientific areas like biology, ecology, and physics.

A transformation in simulation education is underway. More universities are beginning to offer
undergraduate and beginning graduate courses in the area of continuous system simulation designed
for an interdisciplinary audience. Several institutions now offer master’s and PhD programs in
simulation that include a number of courses in both continuous and discrete-event simulation.
A critical mass of students are now enrolled in continuous simulation—related courses and there is a
need for an introductory unifying text.

The essential ingredient needed to make simulation both interesting and challenging is the
inclusion of real-world examples. Without models of real-world systems, a first class in simulation
is little more than a sterile exposition of numerical integration applied to differential equations.

Modeling and simulation are inextricably related. While the thrust of this text is continuous
simulation, mathematical models are the starting point in the evolution of simulation models.
Analytical solutions of differential equation models are presented, when appropriate, as an alterna-
tive to simulation and a simple way of demonstrating the accuracy of a simulated solution. For the
most part, derivations of the mathematical models are omitted and references to appropriate texts are
included for those interested in learning more about the origin of the model’s equations.

Simulation is best learned by doing. Accordingly, the material is presented in a way that permits
the reader to begin exploring simulation, starting with a mathematical model in Chapter 1.
A detailed derivation of the mathematical model of a tank with liquid flowing in and out leads to
a simulation model in the form of a simple difference equation. The simulation model serves as the
vehicle for predicting the tank’s response to various inputs and initial conditions. Additionally,
the derivation illustrates the process of obtaining a mathematical model based on the natural laws
of science.

Chapters 2 and 4 present a condensed treatment of linear, continuous-time, and discrete-time
dynamic systems, normally covered in an introductory linear systems course. Coverage is limited to
basic topics that should be familiar to a simulation practitioner. Section 2.7 is extended to include a
discussion of additional common nonlinear elements, namely, dead zone, quantization, relay, and
saturation. The instructor can skip some or all of the material in these chapters if the students’
background includes a course in signals and systems or linear control theory.

Numerical integration is at the very core of continuous system simulation. Instead of treating the
subject in one exhaustive chapter, coverage is distributed over three chapters. Elementary numerical
integration in Chapter 3 is an informal introduction to the subject, which includes discussion of
several elementary methods for approximating the solutions of first-order differential equations. The
material in Chapters 2 through 4 is a prerequisite for understanding general purpose, continuous
simulation programs that are popular in the engineering and scientific community.

Simulink®, from The MathWorks, is the featured simulation program because of its tight
integration with MATLAB®, the de facto standard for scientific and engineering analysis, and
data visualization software. Chapter 5 takes the reader through the basic steps of creating and
running Simulink models. Section 5.5 includes new material related to simulation implementation
of nonlinear systems using specific blocks from the Simulink library. Due to the popularity of the
Kalman filter, a case study has been added in Section 5.12 on this topic. The continuous-time
Kalman filter equations are developed and modeled in Simulink, including simulated output.
Subsequently, the steady-state continuous-time Kalman filter equations are developed and modeled
in Simulink. The steady-state results are compared with the continuous-time results. Finally, the
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discrete-time Kalman filter equations are developed and modeled in Simulink. The discrete-time
results are compared with the continuous-time results.

Chapter 6 delves into intermediate-level topics of numerical integration, including a formal
presentation of One-Step (Runge—Kutta) and multistep methods, adaptive techniques, truncation
errors, and a brief mention of stability.

Chapter 7 highlights some advanced features of Simulink useful in more in-depth simulation
studies. A new section (Section 7.5) on S-blocks is introduced and an example is presented showing
how to make the discrete-time Kalman filter available for drag-and-drop from the Simulink library.
Other simulation programs offer similar features and the transition from Simulink to other simula-
tion software is straightforward.

Chapter 8 is for those interested in more advanced topics on continuous simulation. Coverage
includes a discussion of dynamic errors, stability, real-time compatible numerical integration, and
multi-rate integration algorithms for simulation of systems with fast and slow components. Due to
the popularity of Lego’s Mindstorms™ NXT, a case study has been added in Section 8.7 on this
topic.

All but two chapters conclude with a case study illustrating one or more of the topics discussed in
that chapter. The featured text examples and case studies are analyzed using MATLAB script files
and Simulink model files, all of which are available from CRC Press.

The text has been field-tested in the classroom for several years in a two-semester sequence of
continuous simulation courses. Despite numerous revisions based on the scrutiny and suggestions
of students and colleagues, it is naive to think the final product is free of errors. Further suggestions
for improvement and revelations of inaccuracies can be brought to the attention of the authors at
rallen397 @cfl.rr.com and klee @mail.ucf.edu.

Numerous individuals deserve our thanks and appreciation for helping to make this book
possible. In particular, a sincere “‘thank you’ to Nora Konopka at Taylor & Francis/CRC Press
for committing to the second edition and seeing it through to fruition.

For MATLAB® and Simulink® product information, please contact:

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA, 01760-2098 USA
Tel: 508-647-7000

Fax: 508-647-7001

E-mail: info@mathworks.com
Web: www.mathworks.com
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T Mathematical Modeling

1.1 INTRODUCTION
1.1.1  IMPORTANCE OF MODELS

Models are an essential component of simulation. Before a new prototype design for an automobile
braking system or a multimillion dollar aircraft is tested in the field, it is commonplace to “‘test
drive” the separate components and the overall system in a simulated environment based on some
form of model. A meteorologist predicts the expected path of a tropical storm using weather models
that incorporate the relevant climatic variables and their effect on the storm’s trajectory. An
economist issues a quantitative forecast of the U.S. economy predicated based on key economic
variables and their interrelationships with the help of computer models. Before a nuclear power
plant operator is “‘turned loose’ at the controls, extensive training is conducted in a model-based
simulator where the individual becomes familiar with the plant’s dynamics under routine and
emergency conditions. Health care professionals have access to a human patient simulator to receive
training in the recognition and diagnosis of disease. Public safety organizations can plan for
emergency evacuations of civilians from low-lying areas using traffic models to simulate vehicle
movements along major access roads.

The word ““model™ is a generic term referring to a conceptual or physical entity that resembles,
mimics, describes, predicts, or conveys information about the behavior of some process or system.
The benefit of having a model is to be able to explore the intrinsic behavior of a system in an
economical and safe manner. The physical system being modeled may be inaccessible or even
nonexistent as in the case of a new design for an aircraft or automotive component.

Physical models are often scaled-down versions of a larger system of interconnected components
as in the case of a model airplane. Aerodynamic properties of airframe and car body designs for
high-performance airplanes and automobiles are evaluated using physical models in wind tunnels.
In the past, model boards with roads, terrain, miniaturized models of buildings, and landscape, along
with tiny cameras secured to the frame of ground vehicles or aircraft, were prevalent for simulator
visualization. Current technology relies almost exclusively on computer-generated imagery.

In principle. the behavior of dynamic systems can be explained by mathematical equations and
formulae, which embody either scientific principles or empirical observations, or both, related to the
system. When the system parameters and variables change continuously over time or space, the
models consist of coupled algebraic and differential equations. In some cases, lookup tables
containing empirical data are employed to compute the parameters. Equations may be supplemented
by mathematical inequalities, which constrain the variation of one or more dependent variables. The
aggregation of equations and numerical data employed to describe the dynamic behavior of a system
in quantitative terms is collectively referred to as a mathematical model of the system.

Partial differential equation models appear when a dependent variable is a function of two or
more independent variables. For example, electrical parameters such as resistance and capacitance
are distributed along the length of conductors carrying electrical signals (currents and voltages).
These signals are attenuated over long distances of cabling. The voltage at some location x measured
from an arbitrary reference is written v(x, 7) instead of simply v(¢), and the circuit is modeled
accordingly.



