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Preface

The primary purpose of this book 1s for use as a text in courses
usually entitled Finite Mathematics that have come into existence
over the last few years in many colleges and universities. Such courses
are normally one quarter or one semester in length and are intended
for students from the social and biological sciences, business ad-
ministration, and liberal arts (and even mathematics!). The first
chapter of 4 Survey is specifically designed for this audience in both
level and content. It 1s divided into seven sections covering basic
mathematical concepts: logic; sets; functions; induction and com-
binatorics; partitions; probability; stochastic processes. This ma-
terial can easily be covered in 30 lecture hours and constitutes the
first third of the book.

The second two thirds of the book is devoted to the basic ideas
from linear algebra and the theory of convex sets. The material from
these disciplines constitute the fundamental mathematical tools used
in the applications to linear programming, game theory, and Markov
chains which appear in the third chapter.

The first section of Chapter 2 1s a completely self-contained intro-
duction to vectors and matrices motivated by simple examples from
the social and biological sciences. The next five sections are some-
what unique for an elementary book. In these, the student 1s intro-
duced to the elementary notions of combinatorial matrix theory:
incidence matrices, systems of distinct representatives, and stochastic
matrices. These topics have far-reaching applications in such diverse
fields as communication networks, sociometric relations, operations
research, and statistics. The last two sections of Chapter 2 are de-
voted to a development of the theory and applications of systems of

linear equations.
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The third and final chapter of the book, entitled Convexity, 1m-
mediately starts with examples of simple linear programming prob-
lems. The basic geometry of convex sets, including the theory of
maxima and minima for linear functions, appears in the first three
sections of this chapter. The remainder of the chapter 1s devoted to
game theory and Markov chains. The treatment of game theory uses
techniques from earlier material on convex sets and matrix theory to
solve matrix games. The section on Markov chains contains a com-
plete treatment of the elementary aspects of this subject and includes
numerous applications.

There are approximately 150 worked examples in the text. These
cover a wide range of applications and form an integral part of the
material. Most of these are routine, but a few require some thought.
Each of the 19 sections of the book ends with a true-false quiz and
a set of exercises. Altogether there are over 1200 exercises in the
book. Many of the more difficult exercises are accompanied by
“hints”’ for solutions that in some cases constitute complete analyses.
Those exercises that are somewhat more difficult are marked with an
asterisk. Exercises which are marked with a dagger contain results or
definitions that are used elsewhere in the text. These exercises should
at least be read and hopefully worked. The quizzes are intended
to remind the reader of the essential points covered in the section.
Experience at the author’s institution indicates that the quizzes are
highly effective teaching aids.

In general, then, this is a book on ““applied mathematics. In 1ts
entirety it is suitable for a two-quarter or one-semester course, or a
three quarter or two semester course if the pace is more leisurely.
It is our belief that the material is appropriate and important for
mathematics majors as well as students from other disciplines. The
first chapter of 4 Survey has been used in manuscript form at the
University of California, Santa Barbara for a freshman course for
students from other departments. The material in Chapters 2 and 3
has been used for a course on discrete applications of matrix theory
in a conference for college teachers sponsored on this campus by the

National Science Foundation.
I would like to express my thanks to Miss Susan Katz, Miss

Barbara Smith, and Mrs. Nancy Stuart for their invaluable assistance
in the preparation of this manuscript. I am also very grateful to
Mrs. Wanda Michalenko and Mrs. Delores Brannon for their ex-
tremely professional jobs in typing and assembling this manuscript.
Professor B. N. Moyls of the University of British Columbia acted
as a referee on this manuscript. His remarks and suggestions were
of inestimable value.

Marvin Marcus



Numbering
System

Each of the chapters 1s divided into sections. Thus the fifth section
of Chapter 1 is Section 1.5. Definitions, theorems, and examples are
numbered separately within each section. Thus Theorem 3.2 is the
second theorem in the third section of the chapter in which it appears.
Reference to a theorem (definition, example) is by its number alone
when the reference 1s 1n the same chapter. If necessary, we give the
section number or the chapter number in which the item appears.
Asterisks on exercises indicate that the problem i1s somewhat
difficult. These exercises are usually accompanied by hints, or their
solutions appear in the Answers. A limited number of exercises are
marked with a dagger . These exercises contain results that are
used within the text and should be carefully read and worked out.
This 1s particularly the case for Exercises 7-18 in Section 2.6 in
which the properties of linear independence are developed. (Detailed
solutions to this sequence of exercises are included in the Answers.)
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fundamentals

chapter 7T

Truth Tables
and Applications

1.1

It 1s appropriate to begin a study of mathematics with a brief
discussion of logic. In thinking about any organized body of in-
formation we should have some idea of the mechanical rules used in
manipulating this information. This comment applies with equal
validity to everyday situations. We are all familiar with rather
obviously fallacious arguments. For example, any Communis:
advocates armed revolution; Mr. X advocates armed revolution;
therefore Mr. X 1s a Communist. This argument is, of course, in-
correct, for, we can all think of members of political groups who
advocate armed revolution and who are, in fact, quite antagonistic
to the Communist doctrine.

In general, the study of elementary logic has several purposes.
Probably the most important of these purposes is to give precise
meaning to such words and phrases as ‘“and’, ‘“or”, “not”,
“if ... then”, and “if and only if”, which occur throughout any
mathematical theory. Second, we want to make somewhat more
precise the laws of inference and deduction that are constantly used

1
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(1)

(2)

(3)

2

in constructing a mathematical theory, i.e., we want to have at least
a rudimentary 1dea of what constitutes a coherent mathematical
argument. However, even an intimate knowledge of formal logic is
no guarantec against error in a mathematical argument; such
knowledge simply diminishes the chances of making certain
“obvious’ mistakes in reasoning. A third and more utilitarian justi-
fication for studying logic is its use in such practical applications as
the analysis of switching networks.

The reader will recall that in elementary plane geometry one starts
with certain primitive or ‘“‘undefined” items such as ‘““points”,
“lines”, etc. There follows a set of “‘axioms” and “postulates™
governing the relationships of these items, e.g., “two distinct points
determine a line.”” One does not attempt to define “points”, “lines”,
etc. in terms of simpler notions, nor to prove the axioms and postu-
lates. These constitute the starting point of Euclidean geometry.
In general, the basic ingredients of a mathematical theory are the
following:

A. a set of undefined objects;

B. a certain set of statements or axioms relating these undefined
objects;

C. a sequence of statements or theorems which concerns the
undefined objects and which are obtained by the rules of logic.

In the development of a mathematical theory, we put together
statements with connectives to obtain new statements. For example,
if p and g represent statements, we may build up compound state-
ments “p and g,”” “p or g,” “not p,” etc. We shall now introduce the
connectives used in standard logical systems and develop the sym-
bolism used to designate them. The first connective i1s the word
“and”’; the symbol used to denote this word 1s

.

The result of putting two statements together with the word “and™

1s referred to as a conjunction.
The second connective is the word “or,”” which 1s denoted by the

symbol
V.

Joining two statements by the word “or” results In a statement

referred to as a disjunction.
The word ‘‘not’ is symbolized by

and inserting ‘“‘not” at the beginning of a statement results in a
statement called a negation.
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(4)

(6)

The fourth basic symbol stands for “if . . . then” and the symbol

1S an arrow,
._..._}‘

An “if . .. then” statement 1s usually called an implication.
Thus, if p and g are statements, they may be connected sym-
bolically by

P N4,
read “p and ¢”’;
PV,
read “p orq’;
ij
read “not p”’; and finally
P —4q,

read “if p then ¢”” or “p implies q.”

We shall assume that to any meaningful statement it 1s possible to
assign a truth value, namely true (T) or false (F). Observe that this is
indeed an assumption. For, consider the statement, “The number of
electrons in the universe exceeds 10'°°°9 Although this statement
seems to make sense, it is not likely that we can decide whether it 1s

true or false.
We can give meaning to the connectives described above by

assigning truth values to each of the four statements p A q, p V g,
~p, and p — ¢ as the truth values for p and ¢ vary individually.
We do this in a convenient tabular form known as a fruth table. In
each of the following tables, we think of p and g as each standing
for entire sentences: p and g can each have one of two truth values,
T or F. The last column of each truth table tells us the resulting truth
value for the appropriate compound statement formed from p
and q.

p 4 pNg
T!| T T
T | F E
AN
F| T F
F | F F
P 9 pV(g
T!| 7T T
T | F T
A\VA
F| T T
F | F F
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(/)

(8)

a

P ~D
T | F
- F | T
P 9 P49
T|T T
T|F F
— !
F | T T
F|F T

Thus p A g 1s false unless both p and g are separately true; p V ¢
18 true unless each of p and q is individually false. For example, if p
1s the statement “2 4+ 2 = 5 and ¢ is the statement “dogs are
animals,” then the statement “p V ¢” is true. Table (7) for negation
is self-explanatory and reasonable; for if p is true then ~p is false,
and conversely, if p 1s false then ~p is true. From Table (8) we see
that the statement p — ¢ will be true unless p is true and ¢ is false.
In other words, we never want a true statement to imply a false one.
The fact that p — g 1s true when p is false, regardless of the truth
value of g, may require some additional explanation, for this is
not the way implication is used in ordinary language. In conversa-
tion one usually has some causal connection in mind between p and
g 1n an 1mplication. Thus the statement, “If men are dogs, then
women are cats” is meaningful, but is not one that would often be
said. Of course, it is false that men are dogs and equally false that
women are cats. Nevertheless we want every meaningful statement
to have a definite truth value, either T or F, and Table (8) stipulates
that “If men are dogs then women are cats” has truth value T.
Another way of saying this is that Table (8) actually defines the
connective —. As another example, consider the implication p — ¢
where p 1s the statement ““n is a number greater than 17 and less
than 3 and ¢ is the statement “n = 5.”” Even though p is false we
want the implication to be true, and this can be justified by observing
that there 1s no number # (whether it is 5 or not) which is greater
than 17 and less than 3. Although this may seem a little silly, it is
important that establishing the truth of p — ¢ not carry with it the
burden of exhibiting a formal connection between p and 4.

Using these elementary connectives we can formulate compound
statements that are quite complicated.
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Example 1.1

(9)

(10)

Example 1.2

(11)

Construct a truth table for the statement p — (p V ~p). In other
words, we want to assign a truth value to the preceding statement for
cach of the two possible truth values for p.

p ~p pN ~p p—(pV ~p)
T! F T T

F| T T T

We filled in the second column by using Table (7), the third
column using Table (6) and the fourth column using Table (8). Thus,
when the truth value of p 1s T then the truth value of p V ~p1s T
(Table (6), row 2), and hence the truth value of the compound
statement p — (p V ~p)1s T by the first row of (8). Stmilarly, when
the truth value of p 1s F then the truth value of p V ~p is T from
the third row of Table (6), and the truth valueof p — (p V ~p)is T
by the third row of Table (8).

A compound statement is said to be valid or a tautology if its truth
value is T regardless of the truth values of its component statements.
Thus from Example 1.1 we see that the implication p — (p V ~p)
is a tautology.

Another useful connective can be defined as follows: the com-
pound statement

(p—q) N (@— p)
will be abbreviated to
P <4

The formula (10) 1s read “p 1f and only if ¢.”” The statements p
and g in (10) are sometimes said to be equivalent.

Construct a truth table for the statement p < g.

pr 9 pP—49 4—PD PHQ__
T T T T |

T _—F F T F
—F_*T T F F

F | F T T T
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The third and fourth columns of Table (11) are read from
Table (8), e.g., in column 4, row 3 of (11), g has truth value T, p has
truth value F, and from the second row of (8), we see that g — p
has truth value F. The fifth column of (11) is obtained by joining the
third and fourth columns with the connective A and using Table (5),
e.g., when p — ¢ has truth value T and g — p has truth value F,
then p <= g has truth value F, as one sees from the second row of (5).

Example 1.3 Show that the following compound statement 1s valid:

[~V N (pV ~q)](pcqg).

Consider the table

p 49 ~pVqg pN~q IN4 peog f
T|T T T T T |T
T|F F T F F | T
F|T T F F F | T
F | F T T T T T

where 1n column 5 we have written 3 A 4 to denote the conjunction
of the statements in columns 3 and 4.

Example 7.4 Show that the following compound statement is valid:

ffpAN(p—-9)—q

p 9 p—q9 pA(p—q f
T|T| T T T
T|F| F F T
F T| T F T
F|F| T F T

The fundamental assumption that we shall make about valid
compound statements or tautologies is that they represent correct
arguments in any mathematical system. In other words, 1t will be
assumed that tautologies represent arguments which are acceptable
in establishing the theorems in a mathematical theory. To illustrate
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this, consider the following kind of reasoning: “If p is the case, and
whenever p is the case it follows that g is the case, then ¢ must hold.”
Put more succinctly: “If p, and p implies g, then ¢.”” If we state this in
logical symbolism, we obtain the compound statement

fripAN(p—9)—q

But we saw in Example 1.4 that fis a tautology, i.e., that fis “true,”
or has truth value T, whatever the truth values of p and g may be.
The fact that (p A (p — q)) — q is a tautology is usually referred
to as the law of detachment or, in somewhat more rarefied terms,
“modus ponens.”” What we have actually done is set up the truth
tables for implication and conjunction in such a way that they yield
the law of detachment as a tautology.

As another example, consider the following statement: “If p
always 1mplies ¢ and g fails to be the case, then p cannot hold.”
This 1s a very familiar and acceptable form of argument used not
only in mathematics but in everyday life. It is known as an indirect
proof or, 1n Latin, “reductio ad absurdum.” For example, suppose
it 18 the case that whenever it is raining 1 invariably carry my um-
brella, and suppose 1 am not carrying my umbrella. Knowing these
two facts, you can conclude that 1t i1s not raining. The symbolic
statement of the method of indirect proof takes the following form:

frp—=q@) A ~q)— ~p.

Consider the truth table for f.

p 9 p—q ~q ~p (p—=qQ AN~q f
TiT| T F F T
T|F| F | T|F| F T
F{T{ T F | T F T
FlF| T T | T T I

Thus the statement fis a tautology and, by our fundamental agree-
ment, represents a correct argument,

A somewhat more subtle argument mentioned earlier is widely
used: “If x 1s a Communist, then x advocates armed revolution.
Moreover, x advocates armed revolution. It follows that x is a
Communist.” This argument is of course rubbish, since x could
equally well be a Minute Man. The argument has the following
form: “If p implies ¢, and ¢, then p.” Denote this statement by f
and consider the truth table:

[ {(p—=9 A q)— p.



