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INTRODUCTION

Purposeful control and improvement of how existing mechanical
systems perform is an important real-life problem, as is the develop-
ment of new systems. We can obtain solutions to these problems by
investigating the working processes of machines and their units and
elements. These investigations should be based on fundamentals of
dynamics combined with a variety of related sciences. The working
processes that characterize system performance can be described by
mathematical expressions that actually represent equations of motion
of these systems. Analyzing these equations of motion reveals the
relationship between the parameters of the system and their influ-
ence on performance and other system characteristics or elements.

This book contains comprehensive methods for analyzing the
motion of engineering systems and their components. The analysis
covers three basic phases: 1) composing the differential equation of
motion, 2) solving the differential equation of motion, and 3) analyz-
ing the solution. Engineering education provides the fundamental
skills for completing these three phases. However, many engineers
would benefit from additional training in using these fundamen-
tals to solve real-life engineering problems. This book provides this
training by describing in a step-by-step order the methods related to
each of these three phases.

When assembling a differential equation of motion, it is essential
to completely understand the components of this equation as well
as the system’s working process. This book describes all possible
components of the differential equation of motion and all possible
factors of the working process. In mechanical engineering, all these
components and factors represent forces and moments. The charac-
teristics of all these loading factors and their application to particular
differential equations of motion are presented in this book.

This book also introduces a straightforward universal meth-
odology for solving differential equations of motion by using
the Laplace Transform. This approach replaces calculus with
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conventional algebraic procedures that do not represent any dif-
ficulties for engineers. Using the Laplace methodology to solve
differential equations of motion does not require memorizing the
fundamentals of the Laplace Transform. Instead, this book presents
an appropriate table of Laplace Transform pairs. It then explains
how to use the pairs to convert differential equations into algebraic
equations and then how to invert the solutions of these algebraic
equations into conventional equations representing the functions
of displacement of time.

Analyzing the solutions of differential equations of motion reveals
the role of the system’s parameters, the influence of these parameters
on each other, and how to control the performance of the system.

The motion of a mechanical system is characterized by its dis-
placement, velocity, and acceleration. These three characteristics
are the three basic parameters of the system’s motion. All other
characteristics of the working processes can be determined by ana-
lyzing these three parameters. The equation of motion represents
the displacement of the system as a function of time. The other
two parameters — velocity and acceleration — are respectively the
first and second derivatives from the displacement. Thus, the equa-
tion of motion is the basis for solving the mechanical engineering
problem.

The equations of motion represent the solutions of differential
equations of motion that reflect the real working processes of the
systems. When we assemble these differential equations of motion,
we use methodologies that are built on a close interaction between
theoretical and applied sciences. Rapidly advancing technology
stimulates intensive searches for more sophisticated engineering
solutions. Therefore, we must be familiar with the methodologies
for solving actual mechanical engineering problems.

This text can help you achieve the level of competence you need
to successfully analyze real mechanical systems. An engineering
educational background is sufficient to comprehend the contents of
this text. We develop a comprehensive, step-by-step guide to solv-
ing mechanical engineering problems. Numerous examples dem-
onstrate the methodologies that enable us to control the parameters
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of real systems. A wide range of readers can benefit from this
book. Accounting for the different levels of their backgrounds, the
step-by-step approach begins with the simplest examples and then
gradually increases the complexity of the problems.

The text consists of six chapters. Let us consider briefly the con-
tents of each.

1. Differential Equations of Motion

Our analysis of problems associated with dynamics is based on the
laws of motion. These laws (or equations) of motion are the subject
of Chapter 1. They represent displacement (the dependent variable,
the function) as a function of running time (the independent vari-
able, the argument). In general, motion has three phases: accelera-
tion, uniform motion, and deceleration.

Displacement in uniform motion is a product of multiplying
a constant velocity by the running time. This formula is known
from basic physics; it is applicable to any uniformly moving
object. Analysis of this formula, however, adds very limited help
in understanding the working process and performance of an actual
mechanical system.

Solutions that lead to performance control can be obtained from
the expressions that describe acceleration and deceleration —
equations representing the displacement, velocity, and acceleration
as functions of time. For the plurality of real problems, there are
no readily available formulas for these three parameters. Instead,
mathematical expressions of these three parameters can often be
obtained from solutions of corresponding differential equations of
motion.

For each case, we should assemble an appropriate differential
equation of motion that reflects the physical nature of the problem.
As the book will show, composing differential equations of motion
is not a trivial procedure.

A differential equation of motion is a second order differential
equation made up of the second and first derivatives, the function,
the argument, and, the constant terms. The structure of a second
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order differential equation is based on principles of mathematics
without any dependence on laws of motion. The same approach is
applicable to all mathematical rules used for practical calculations
in different fields. The characteristics of motion include the second
derivative (acceleration), the first derivative (velocity), the func-
tion (displacement), the argument (running time), and the constant
terms. A natural linkage exists between the second order differential
equation and the parameters of motion — the process of motion is
described by a second order differential equation. (The second order
differential equation is also applicable to electrical circuits and other
physical phenomena; this text can be used for electrical engineering
as well.)

In mathematics, the components of differential equations are
dimensionless. In dynamics, each component of a differential equa-
tion should have the same physical units. Differential equations
of motion are made up of loading factors that represent forces or
moments whereas differential equations of electrical circuits include
components that represent voltage.

The three basic parameters of motion are not loading factors —
they have different units. These parameters cannot be directly includ-
ed in a differential equation of motion. Each parameter should be
multiplied by appropriate coefficients in such a way that the prod-
ucts have the units of loading factors, which cause the motion of
objects.

Both the structure and the solution of the differential equations of
motion are absolutely identical for rectilinear and rotational motions;
their parameters are completely similar. Thus, the examples are pre-
sented just for rectilinear motion. Keep in mind that, if necessary,
forces should be replaced by moments while the masses should be
replaced by moments of inertia; the rectilinear parameters of motion
should be replaced by the corresponding angular parameters. All this
will not change the structure of the differential equation of motion
and its solution. All considerations regarding forces are completely
applicable to moments.

Particular attention is paid in Chapter 1 to explaining the structure
of differential equations of motion and assembling them.
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2. Analysis of Forces

The structure of the differential equation of motion is absolutely
similar for rectilinear and rotational motion. So too is the process
of composing the equation. To avoid redundant explanations, our
analysis of loading factors focuses just on forces. However, the
same characteristics and considerations are completely applicable
to moments.

The left side of the differential equation of motion consists of
resisting forces, whereas the right side consists of active forces. The
resisting forces are variables (inertia, damping, and stiffness) and
constants (e.g., dry friction, gravity, and plastic deformation). The
force of inertia is present in all differential equations of motion.
The resisting forces should be identified depending on the function-
ality and on the structure of the mechanical system as well as on the
nature of the environment in which the motion occurs.

As variables, the force of inertia depends on acceleration, the
damping force on velocity, and the stiffness force on displacement.
These resisting forces can be linear or non-linear and their charac-
teristics are determined by their coefficients. The coefficient of the
inertia force is the mass, which is usually a constant value; conse-
quently, the inertia force is linear. Non-linear inertia forces are not
considered in this book. The damping and stiffness coefficients can
also be constant or variable. If constant, the differential equation of
motion is linear. If even one of these coefficients is a variable, the
differential equation of motion is non-linear.

In certain mechanical systems, resisting forces could appear that
represent some functions of time. However the majority of conven-
tional mechanical systems do not have any obvious factors pointing
to the existence of time-depending resisting forces which, therefore,
are not discussed in this book.

In the majority of cases, the characteristics of active forces are
predetermined. For conventional mechanical systems, these active
forces include: constant forces, sinusoidal forces exerted by vibra-
tors, and forces depending on time, velocity, or displacement. These
last three can be linear or non-linear.



xiv  Introduction

Chapter 2 looks closely at the characteristics and peculiarities of
the resisting and active forces.

3. Solving Differential Equations of Motion Using
Laplace Transforms

In solving the differential equations of motion, our goal is to obtain
an expression for displacement as a function of time. This expres-
sion is also called the law of motion. Finding the best method for
solving various linear differential equations can be challenging.
However, the Laplace Transform represents a straightforward uni-
versal method for solving all linear differential equations.

The Laplace Transform lets us convert differential equations into
algebraic equations whose solutions can be achieved by conven-
tional algebraic procedures. We can apply the Laplace Transform
without addressing the mathematical principles on which it is built.
It provides a straightforward methodology regardless of the charac-
teristics of the equation’s components or its initial conditions.

Chapter 3 reviews the steps of this methodology; they are identi-
cal for each differential equation. First, we convert the differential
equation of motion from the time domain form into the Laplace
domain form, working with a table of Laplace Transform conver-
sion pairs compiled for this text. The second step of the method-
ology deals with the Laplace domain solution of the differential
equation of motion. This step, based on ordinary algebraic proce-
dures, results in an algebraic equation that represents the dependant
variable (e.g., displacement) as a function of the independent vari-
able (e.g., running time). Both variables are in the same Laplace
domain. The Laplace Transform eliminates the need of calculus to
solve the differential equation of motion. Therefore, we obtain an
algebraic equation with the dependent variable in the left side of
the equation, and a sum of algebraic expressions (proper fractions)
on the right.

In the last step, we invert all the terms of the solution from the
Laplace domain into the time domain form. This inversion repre-
sents the solution of the differential equation of motion. All three
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steps of this methodology are demonstrated in the text by solving
numerous examples.

In some cases, there will be terms in the right side of the Laplace
domain solution that do not have representations in this text’s table,
or even in other, more comprehensive tables. For these cases, Chap-
ter 3 discusses a method of decomposition used to resolving these
expressions.

The examples in this chapter begin with a solution of a very sim-
ple differential equation. The complexity of the solutions gradually
increases; ultimately, the examples include a range of diversified
differential equations of motion of actual mechanical systems.

4. Analysis of Typical Mechanical Engineering Systems

Assembling the different equation of motion is a very important
step when investigating the dynamics of a mechanical system. The
differential equation should reflect the peculiarities of the real work-
ing process. This chapter discusses the considerations that are rel-
evant to the process of assembling differential equations of motion.
These considerations are associated with real-life problems of typi-
cal mechanical systems. We start with composing the appropriate
differential equation of motion. The following step focuses on this
equation’s solution. In the last step, our analysis of the solution
reveals the system’s performance characteristics: energy consump-
tion, required power, acting forces, and others. The complexity of
the examples increases from example to example, and can be very
helpful in solving actual problems.

5. Piece-Wise Linear Approximation

Chapters 3 and 4 are devoted to solving linear differential equa-
tions of motion. In reality, many loading factors that are included in
these equations are actually non-linear. However, the non-linearity
of these factors is often not essential; it is then justifiable to consider
them as being linear. There are no currently established methodolo-
gies for solving non-linear differential equations in general terms.
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Many specific non-linear differential equations can be solved
using particular mathematical investigations, and there are catalogs
where these solutions can be found. However, these solutions have
a very limited applicability to non-linear differential equations of
motion.

In a significant number of real life problems, the non-linearity of
the loading factors cannot be ignored. Neglecting the strong non-
linearity of these factors results in essential quantitative errors; yet
some important qualitative characteristics of the process could be
misunderstood or not revealed at all.

The method of piece-wise linear approximation allows us — with
an appropriate accuracy — to investigate problems that include non-
linear loading factors. The characteristics of these factors can be
represented by corresponding graphs whose curvatures reflect the
extent of the factors’ non-linearity.

Piece-wise linear approximation consists of replacing the curve
by a broken line. For instance, if the curve is replaced by a broken
line including three straight segments, the process of motion can be
divided into three intervals. For each interval, a linear differential
equation will be composed with the initial conditions of motion
equal to the conditions of motion at the end of the previous interval.
The shorter the length of the segments, the more accurate the results
of the solution will be. A reasonable compromise will decide the
number and values of the replacement increments that would satisfy
the goal of the investigation. The application of the piece-wise linear
approximation to the solutions of real-life problems comprising non-
linear loading factors is presented in a detailed way in this chapter.

6. Dynamics of Two-Degree-of-Freedom Systems

Numerous mechanical engineering systems are made up by sev-
eral separate masses connected among themselves by specific links.
These links allow for motion of these masses relative to each other.
Each motion is described by its mass’s differential equation. The
amount of these masses defines the number of degrees-of-freedom
of the system. Of the actual multiple-degree-of-freedom mechanical
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systems, the majority have just two masses — therefore, this text is
limited to considering two-degree-of-freedom structures. Two types
of links allow relative motion of the connected masses: the elastic
link (spring) and the hydraulic link (dashpot). The masses could
be connected by a hydraulic or elastic link, or by both links acting
in parallel. A simultaneous system of two differential equations of
motion should be assembled in order to describe the motion of the
two masses.

Chapter 6 contains a detailed discussion of the structures of the
differential equations of motion and also of the considerations for
composing these equations. It also includes typical examples that
demonstrate the methods for investigating two-degree-of-freedom
systems.

A General Note

These chapter descriptions indicate that the analysis of an actual
mechanical system is a complex process engaging an interaction
among several sciences.

During the first steps of the analysis, we should pay particular
attention to the characteristics of the damping and stiffness resist-
ing forces. In the majority of practical cases, these forces could be
linear or non-linear whereas the rest of the forces are usually linear.
Information regarding the characteristics of the actual damping and
stiffness forces for a specific case should be based on the results of
the investigations; these results are usually presented in graphs or
can be found in corresponding sources.

Normally, our analysis of the solutions of the differential equa-
tion of motion provides the information needed to make appropriate
engineering decisions. This text includes all the steps necessary for
a complete analysis of actual problems in mechanical engineering
dynamics.

Numerous software programs are available for computing the
parameters of motion of mechanical engineering systems. These
programs can be used when the differential equations of motion are
already available. When investigating real life problems, the first
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steps are associated with composing the differential equations of
motion. This text is intended to help you assemble these equations.
In many practical situations, you may need to analyze the working
process of a mechanical engineering system in order to estimate the
influence of the parameters on each other and to reveal their specific
roles. For these cases, we present the analysis in general terms with-
out any use of related numerical data. This book will also be useful
for performing this kind of analyses.
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