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Medical DNA Sequencing in Neuroscience

KAROLA REHNSTROM, ARVID SULS, AND AARNO PALOTIE

INTRODUCTION

The aim of medical genetic studies is to iden-
tify genetic variants associated with a disorder
or trait of interest. A hypothesis-free way to
conduct gene mapping studies has been avail-
able ever since genetic variants, usually referred
to as genetic markers, were identified. The first
genetic markers used in gene mapping studies
were a small number of blood antigens; later,
microsatellites were used. The human reference
genome and the Hap Map project identified
millions of single nucleotide polymorphisms
(SNPs) spread all across the genome, which
provided a much denser map of genetic mark-
ers. Today high-throughput sequencing tech-
nology has made it possible to decode every
base pair in the human genome, enabling
the identification not only of sites, which are
polymorphic in a population, but also of pri-
vate mutations, which are present in only one
individual. Despite the feasibility of producing
enormous datasets for medical genetic studies,
the path from generating the data to identifying
the variants involved in the disease and further
converting this to an understanding of biologi-
cal mechanisms is still in its early stages.

THE HISTORY OF GENE
MAPPING STUDIES
Traditionally, human genetic disorders have
been divided into monogenic and complex
types. This somewhat simplified division
reflects the underlying genetic architecture.
Monogenic (or Mendelian) disorders are caused
by mutations in one gene. These mutations are
highly penetrant and rare in the population
(Figure 1.1). Depending on the mode of inheri-
tance, loss of one or two copies is required for
the disease to manifest. More than 3,000 such
disorders are listed in the Online Mendelian
Inheritance in Man (OMIM, www.ncbi.nlm.
nih.gov/omim) database, and the causative

genes have been identified in one third to half
of these (Bamshad, Ng, et al. 2011). Although
many disorders, particularly monogenic reces-
sive disorders, are clearly caused by mutations
in a single gene, there are likely other genes that
can modify the phenotypic features. This could
prove particularly true for dominant disorders,
because they often display reduced penetrance
and the phenotype can be highly variable, even
within a family where the primary genetic
lesion is shared by all affected individuals.

Genetic mapping of monogenic disorders
has been successful. Linkage analysis and sub-
sequent sequence analysis in a small number
of families has often resulted in identification
of the causative gene. An excellent example of
the power of these approaches, and the power
of genetic homogeneity in isolated populations,
is successful mapping of genes for monogenic,
often recessive disorders in population isolates
such as the Finns or the Hutterites (Boycott,
Parboosingh, et al. 2008; Norio 2003). Although
linkage studies have identified genes for many
monogenic disorders, there are still numer-
ous disorders for which the causative gene or
genes are not known. These include disorders
where families are too small to provide a link-
age signal or cases where genetic heterogeneity
between families is very high and traditional
methods have not been able to identify the
disease genes.

Complex disorders are caused by a com-
bined load of a large number of genetic
variants, each of which confers a very small
increase in risk (Figure 1.1). These variants are
relatively common in the population. The
genetic background of complex disorders has
been extensively characterized during the last
decade using genome-wide association studies
(GWAS). In these studies, very large cohorts
of samples are genotyped at loci known to be
polymorphic in the population. Statistical tests
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Commaon, highly penetrant, and
deleterious variants are unlikely
to exist because of selection,

Low-frequency variants increase

Effect size

risk for oligogenic disorders,
detectable by GWAS, linkage, or
next-generation sequencing in
families or case control cohorts.

Allele frequency

FIGURE 1.1: The genetic architecture of diseases and traits ranges from disorders caused by only one highly
disruptive and fully penetrant variant to those caused by the additive effects of numerous genetic variants of very
small effect, often in combination with environmental factors. Highly disruptive variants (i.e., variants with a
large effect size) are rare in the population as they are subject to strong negative selection, whereas variants with
lower effect sizes can become more common in the population as one variant alone is insufficient to cause the
disorder. Currently available technologies and analysis methods for the identification of these variants have their
limitations; choice of the most efficient approach for gene mapping studies depends on the genetic architecture

of the trait.

are then performed to determine if a genetic
marker is more common in cases than controls.
The combination of large-scale SNP identifi-
cation projects allowing for dense coverage of
the whole genome combined with technologi-
cal advances in high-throughput genotyping
technology enabling the genotyping of tens of
thousands of samples has resulted in identify-
ing the association of thousands of SNP mark-
ers with hundreds of diseases and traits (http://
www.genome.gov/gwastudies/). However, in
most cases the GWAS loci explain only a small
to moderate part of the heritability of the traits.
For complex disorders, the environment is also
likely to play a much larger role than for mono-
genic disorders and will probably prove to be
the main susceptibility factor for some of them.
In addition to common variation, rare variants
with large effect sizes have also been found to
play a role in several complex disorders. GWAS

technologies have been poorly equipped to
identify such risk variants, whereas large-scale
sequencing studies are better equipped to
identify them.

Many disorders cannot be distinguished as
being either monogenic or complex, since there
are numerous complex disorders that also have
monogenic, very severe, and often early-onset
forms. For example, meta-analyses of tens of
thousands of individuals have revealed dozens
of common susceptibility variants for both type
1 and type 2 diabetes (Bradfield, Qu, et al. 2011;
Saxena, Elbers, et al. 2012). At the same time,
rare mutations in GCK (Froguel, Vaxillaire,
et al. 1992) and HNFIA (Yamagata, Furuta,
et al. 1996) cause maturity-onset diabetes of
the young (MODY), and mutations in KCNJI1!
(Gloyn, Pearson, et al. 2004) and ABCCS8
(Babenko, Polak, et al. 2006) cause neonatal
diabetes, two monogenic forms of diabetes.



Medical DNA Sequencing in Neuroscience 5

Similarly, GWAS analyses of blood lipid levels
have revealed significant overlap between genes
with common susceptibility variants and previ-
ously identified genes in familiar forms of dys-
lipidemias (Teslovich, Musunuru, et al. 2010).
For many disorders where the molecular etiol-
ogy is not known, it is not possible to differ-
entiate between monogenic and complex forms
of the disorder based on the phenotype alone;
therefore several complementary gene mapping
efforts are needed to further our understanding
of the genetic architecture of genetic disorders
and traits.

CURRENT STATUS

The development of genotyping and sequenc-
ing technologies along with a good partnership
between academia and industry has been essen-
tial in changing the landscape on how human
disease genomics research is done. During the
past 10 years genotyping studies have moved
from linkage panels based on 400 microsatel-
lites to genotyping up to a million markers for
GWAS and lately to sequencing the complete
genome in each study sample. As summa-
rized above, gene mapping technologies have
successfully identified genes for monogenic
as well as more complex disorders. However,
there are many cases where neither approach
has been successful. Traditional automated
Sanger sequencing is very costly and laborious
if large linkage intervals must be sequenced,
and GWAS are limited in their power to iden-
tify susceptibility factors with a very low allele
frequency.

Next-Generation Sequencing
Technology
The initial draft of the human genome was
produced using automated Sanger sequencing,
a technology where modified fluorescent bases
are incorporated into a strand of DNA using
polymerase chain reaction (PCR) and then sep-
arated by gel electrophoresis (Lander, Linton,
et al. 2001). However, the completion of the
draft sequence took a large consortium of 20
collaborating research groups a decade and cost
$3 billion. Clearly technological advances were
required to enable large-scale DNA sequencing
projects. The term next-generation sequencing
(NGS) is used for the high throughput tech-
nologies that have been developed to comple-
ment and ultimately replace Sanger sequencing.
These methods have been available from 2004

(Margulies, Egholm, et al. 2005) and have
brought with them an immense drop in sequenc-
ing cost. Until 2007 the reduction in sequencing
cost was well modeled by Moore’s law (which
describes a long-term trend in the computer
hardware industry that involves the doubling of
“compute power” every two years and is often
used as a standard to assess whether technolog-
ical development is being successful). Since the
beginning of 2008 the drop in sequencing cost
has been much faster than predicted by Moore’s
law, allowing for the generation of ever-growing
datasets. (Wetterstrand KA. DNA Sequencing
Costs: Data from the NHGRI Large-Scale
Genome Sequencing Program Available at:
www.genome.gov/sequencingcosts). NGS has
been successfully applied to several areas of
genetics and epigenetic research, including but
not limited to medical genetic studies, popula-
tion genetics, evolutionary studies, transcrip-
tomics, and epigenomics.

Currently two main approaches are used to
generate large-scale resequencing data for med-
ical genetic studies: selective capture of specific
genomic regions and whole-genome sequencing
(WGS). Capture of selected genomic regions is
suitable for projects where targeted genomic
regions, such as loci identified in GWAS, or
predefined sets of genes (such as synaptically
expressed genes) are being targeted. The benefit
of targeted sequencing is that because limited
amounts of is being generated, data from several
samples can be pooled together in one run on
the sequencing instrument; thus a large number
of samples can be included in the study. WGS
generates a huge amount of data and requires
much more sequencing capacity and storage
space per sample. Furthermore, the additional
data volume results in analytical and interpreta-
tional challenges. On the other hand, WGS data
is totally hypothesis-free as it allows the assess-
ment of all variation present in an individual’s
genome. An often used compromise between
the two extremes is whole-exome sequenc-
ing (WES), a form of selective capture where
all known protein coding regions (exons) are
sequenced. The genetic variants causing mono-
genic disorders usually affect protein structure
and function and are thereby located in exons
(Kryukov, Pennacchio, et al. 2007; Stenson,
Ball, et al. 2009). Therefore focusing sequencing
efforts on the exome will likely reveal variants
with large effect sizes that are acting by disrupt-
ing or altering protein function. However, the
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basic assumption that all disorders are probably
caused by coding variants is likely untrue. It is
possible that the majority of identified variants
are exonic because gene identification efforts
have been concentrated on exons. In addition,
prediction of the consequence of a coding vari-
ant on protein function is somewhat easier
than prediction of the consequence of noncod-
ing variants. WGS is likely to provide unbiased
information about the true genetic architecture
of traits.

Currently it is widely accepted that WES
is well powered to detect variants involved in
human disease. WES has so far identified genes
for over 100 monogenic disorders (Rabbani,
Mahdieh, et al. 2012). The same approach
has also been applied to complex disorders,
although with more modest success. In addition
to the successes, the challenges of this approach
have also become evident. Interpretation of the
sequence data and identification of functional
disease-causing mutations from the multitude
of variants in each exome sample is not a trivial
task. Developing the statistical framework guid-
ing the interpretation of WES data is still in
progress. Firm guidelines will help in the inter-
pretation of the sequence data.

Sample Preparation and Targeted

Sequence Capture
The NGS sequencing instruments will sequence
every molecule of DNA in the template library
loaded onto the instrument. If sequencing is
to be limited to specific regions of interest,
enrichment of these regions from the entire
genome must be performed before the sample
is sequenced. In traditional automated Sanger
sequencing this was primarily achieved by
PCR amplification of regions of interest, and
PCR-based methods have also been used for
NGS (Meuzelaar, Lancaster, et al. 2007; Varley
and Mitra, 2008). Today, however, enrichment
of regions of interest is primarily achieved by
targeted hybrid capture methods.

Hybrid capture can be used to enrich for
any regions of interest, such as a subset of genes
(Figure 1.2). One of the most common applica-
tions, however, is to capture all protein coding
regions of the genome. The protein coding exome
comprises only (1.2%) of the human genome
(Dunham, Kundaje, et al. 2012). However, what
today is called exome capture is actually an
enrichment not only for protein coding regions
but also other possible functional regions of the

genome, such as micro RNAs (miRNAs) and
noncoding exons. In practice, different manu-
facturers have slightly different content on their
exome capture reagents. Comparisons of the
most popular products available suggest that
certain kits cover a slightly larger amount of
protein coding and miRNA genes, but none of
the kits cover all Consensus Coding Sequence *
(CCDS) exons (Asan, Xu, et al. 2011; Coffey,
Kokocinski, et al. 2011; Sulonen, Ellonen, et al.
2011). Analogous to GWAS chips, the exome
capture assays get updated as new annotation
information becomes available to include as
much of the coding sequence and other func-
tional regions as possible. Usually the baits
included in the exome capture assays are based
on information from several different databases
and annotation resources, such as genes from
the CCDS project (Pruitt, Harrow, et al. 2009),
RefSeq (Pruitt, Tatusova, et al. 2012), Gencode/
Encode (Harrow, Frankish, et al. 2012) and
miRbase (Kozomara and Griffiths-Jones 2011)
or other miRNA databases.

It is highly likely that WES is a temporary
compromise that is currently employed for con-
venience to limit data generation and ease the
interpretation of results. It will be routinely
replaced by WGS as prices drop, sequencing
capacity increases, and better annotation work-
flows are available. Therefore, in the future, many
of the problems and pitfalls associated with WES
will be surpassed. Although the limited amount
of data produced by WES can simplify interpre-
tation of results, it will limit variant detection to
a small part of the genome. Sample preparation
usmmlso increases cost per
base pair sequenced compared with WES. On
the other hand, the small size of the target DNA
allows for cost-efficient sequencing of samples at
relatively high coverage (usually 30- to 60-fold
coverage), increasing the power to detect rare
variants compared with lower-coverage WGS.
Despite the improvement of exome capture
assays, the coverage of individual exomes is
still highly variable even in high-coverage data.
A fraction (up to 0.5%) of the target regions are
not captured at all or at very low coverage, mak-
ing the individual exon coverage highly variable
(Asan, Xu, et al. 2011). WGS often produces a
more even coverage of the genome, as no bias is
introduced by hybrid capture. The uneven dis-
tribution of sequence depth in WES data makes
the detection of copy number variants (CNVs)
more challenging than for WGS data.
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FIGURE 1.2: The main steps of next-generation sequencing: First DNA is extracted and fragmented and adapters
that serve as PCR primers are added to the ends of the DNA fragments. If DNA from several samples is sequenced
in the same lane of the sequencing instrument, oligonucleotides that serve as barcodes for each individual sample
are also added to the fragments (not shown). If only a subset of the genome is to be sequenced, DNA or RNA
baits are used to enrich for the desired genomic regions and a biotin-streptavidin-based pull-down reaction is
used to obtain the desired DNA fragments. These are then amplified and sequenced and the images produced by
the sequencing instrument are processed to extract the DNA sequence for each amplified DNA fragment.

The workflow for WES consists of three basic
steps—template preparation, sequencing, and
imaging—followed by bioinformatic analysis
(Figures 1.2 and 1.3). To construct a template,
a relatively large amount (several micrograms)
of genomic DNA is randomly sheared to form
fragments, and adaptors (short oligonucle-
otides) are added to the sequences. Enrichment
of the exonic sequence is done by hybridiz-
ing the sheared DNA with biotinylated DNA
or RNA baits, and the hybridized fragments
are then captured by biotin-streptavidin-based
pull-down. The exome library is then massively
amplified by using the adapters as primers, and
the amplified DNA molecules are sequenced.
As current technologies allow for the sequenc-
ing of several samples in the same lanes of the
sequencing instrument, barcoded indexing tags
are introduced at the library preparation stage
for identification, after sequencing, of sequences
belonging to individual samples.

Sample preparation for WGS is simpler as
it does not require any template selection. The
sequencing library is created from sheared seg-
ments of DNA, which are attached to adapters to
allow amplification of the DNA. Although most

current technologies rely on amplification before
sequencing, some technologies can sequence
unamplified DNA (Treffer and Deckert 2010).

Amplification and Sequencing
Technology

Before the actual sequencing takes place, most
currently available sequencing technologies
require that the DNA library be massively
amplified to provide multiple copies of each
DNA fragment. Various approaches are used by
the different NGS technologies for the amplifi-
cation and sequencing steps (Metzker 2010).

Amplification can occur by emulsion PCR
(Dressman, Yan, et al. 2003) where single-
stranded DNA is attached to beads and then
amplified by PCR (used by Roche/454 and
Applied Biosystems/SOLiD). The conditions are
optimized so that only one template molecule
attaches to each bead and is therefore a clonal
copy of the original fragment after amplification.
Beads can then be cross-linked to glass surfaces
or deposited in microscopic wells for sequencing.

Amplification can also be performed in
solid phase (Adessi, Matton, et al. 2000; Fedurco,
Romieu, et al. 2006) (Illumina/HiSeq). The DNA
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with the attached adapters is immobilized onto
a two-dimensional surface with oligonucle-
otides that are complementary to the adapters.
PCR is then performed, using primers designed
to target the adapters of the DNA fragments
until clusters of about a million copies of the
original DNA molecule are formed.

After amplification, the actual sequencing reac-
tion is performed, which involves the steps of base
determination, imaging, and initial image process-
ing to decode the order of bases in the DNA frag-
ment (Anderson and Schrijver 2010; Mardis 2008;
Metzker 2010). Sequencing can be performed
either by synthesis or by ligation. Sequencing by
synthesis can be further divided into cyclic revers-
ible termination, single-nucleotide addition, and
real-time sequencing.

Cyclic reversible termination involves the
addition of either one or all four nucleotides,
which will bind in a template-defined manner
and are added by a mutant DNA polymerase
that carl incorporate the modified nucleotides.
The nucleotides are capped to prevent addi-
tional extension reactions and have a fluorescent
label. Following incorporation, the unincorpo-
rated nucleotides are washed away and imaging
by lasers is performed to determine the identity
of the nucleotide. Subsequently, the terminating
group and fluorescent label are cleaved to allow
for another round of template-directed extension.
In this method, with the addition of all four bases,
each cycle is used by the Illumina/HiSeq, whereas
the Helicos BioSciences single molecule sequenc-
ing technology uses a cyclic reversible termina-
tion with only one base added to each cycle of
the sequencing (Braslavsky, Hebert, et al. 2003).

Pyrosequencing (Ronaghi, Uhlen, et al
1998), used by the Roche/454 (Margulies,
Egholm, et al. 2005), is also a DNA polymerase-
driven method that detects the bioluminescence
generated by the release of inorganic pyro-
phosphate when the DNA sequence is being
extended by a complementary nucleotide. The
order and intensity of the bioluminescence is
recorded by the charge-coupled device (CCD)
camera in the instrument. The signal strength
is proportional to the number of nucleotides;
for example, homopolymer stretches generate a
greater signal than single nucleotides.

Sequencing by ligation is also a cyclic
method but uses a DNA ligase instead of a DNA
polymerase (Tomkinson, Vijayakumar, et al. 2006).
The process uses either one-base-encoded probes
or two-base-encoded probes. A fluorescently

labeled probe hybridizes to the target in a
template-guided manner and a DNA ligase is
added to join the probe with the primer. After
nonincorporated probes are washed away,
fluorescence detection will determine which
nucleotide has been incorporated. Again, the
fluorescent dye will then be removed and
another set of probes will be added. The Life/
SOLiD technology uses two-base-encoded
probes, which yield a sequence every five base
pairs because of three degenerate bases on each
dinucleotide probe (Shendure, Porreca, et al.
2005; Valouev, Ichikawa, et al. 2008). After fin-
ishing the first round of ligation, the template is
stripped and another primer is used, this time
starting at (n-1) position relative to the first round.
This way, after doing five rounds of elongation, the
whole sequence will have been twice covered by
template-specific interrogation bases.

Data from the sequencing run is stored in
image files, which are processed to determine the
base-pair composition of each fragment that has
been sequenced. The manufacturers supply algo-
rithms for base calling, but other base-calling
algorithms have been developed that provide
improvement over the manufacturer-developed
methods at the cost of higher computational
intensity (Kao, Stevens, et al. 2009; Kircher,
Stenzel, et al. 2009; Quinlan, Stewart, et al.
2008; Wu, Irizarry, et al. 2010).

The different NGS platforms introduce dif-
ferent biases depending on the strengths and
weaknesses of the technology used. For exam-
ple, the 454 has increased error rates in homo-
polymer reads due to the wide variety in the
observed fluorescence intensity for a homo-
polymer of a specific length. For Illumina data,
the rate of error increases toward the end of the
reads as the synthesis process becomes desyn-
chronized between different copies of the DNA
template in the clusters. The SOLiD technology
suffers from errors due to biases in fluores-
cence intensities that appear in later cycles. All
of these biases must be accounted for in image
processing and subsequent analysis steps to
produce a reliable dataset.

Bioinformatic Analyses
Multiple steps of bioinformatic analyses are
required to transform the base call data obtained
from the next-generation sequencers into vari-
ant lists that can be used in medical genetic
studies (Figure 1.3). The first step is to align the
sequence data to a known reference sequence



