SCHAUM'’S

ouTl/ies 4

[NTRODUGTION T DIGITAL YSTEMS

JAMES PALMER, Ph.D. DAVID PERLMAN

The perfect aid for better grades

Covers all course fundamentals and
supplements any class text

Teaches effective problem-solving

Features fully worked problems

Ideal for independent study

THE ORIGINAL AND MOST POPULAR
COLLEGE COURSE SERIES AROUND THE WORLD

SCHAUM'’S OUTLINE OF

THEORY AND PROBLEMS

OF

INTRODUCTION

DIGITAL
SYSTEMS

JAMES E. PALMER, Ph.D.

Professor of Electrical Engineering
Rochester Institute of Technology

DAVID E. PERLMAN

Associate Professor of Electrical Engineering
Rochester Institute of Technology

SCHAUM’S OUTLINE SERIES
McGRAW-HILL

New York San Francisco Washington, D.C. Auckland Bogotd
Caracas Lisbon London Madrid Mexico City Milan
Montreal New Delhi San Juan Singapore
Sydney Tokyo Toronto

JAMES E. PALMER is Professor of Electrical Engineering at the Roches-
ter Institute of Technology, in Rochester, New York (R.I.T.). He received
his B.Sc. from the University of Western Ontario, his M.S.E.E. from the
University of Pennsylvania, and his Ph.D from Case Institute of Tech-
nology. His research interests are the design of digital systems with an
accent on product design and its concurrent engineering aspects. From
1968 to 1974 he was Director of Engineering at Gannon University. From
1974 to 1978 he was Head of the Electrical Engineering Department at
RIT. Presently he teaches courses in the areas of digital system design and
test and also in the areas of control system design.

DAVID E. PERLMAN is an Associate Professor of Electrical Engineering
at the Rochester Institute of Technology, in Rochester, New York. He
received B.E.E. and M.E.E. degrees from Cornell University and, following
ten years as a design engineer and researcher at the Eastman Kodak
Company, he left to become one of the founders and Vice President of
Advanced Development of Detection Systems, Inc., in Fairport, New York,
a position he held for thirteen years. He holds twelve patents. In 1982, Mr.
Perlman joined the faculty at R.1.T., where he has been teaching graduate
and undergraduate courses in electronics as well as undergraduate courses
in circuits and digital systems.

Schaum’s Outline of Theory and Problems of
INTRODUCTION TO DIGITAL SYSTEMS

Copyright © 1993 by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United
States of America. Except as permitted under the Copyright Act of 1976, no part of this publication
may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval
systern, without the prior written permission of the publisher.

101112131415 CUS/CUS 098765

ISBN 0-07-048439-2

Sponsoring Editor: John Aliano
Production Supervisor: Leroy Young
Editing Supervisor: Meg Tobin

Front Matter Editor: Maureen Walker

Library of Congress Cataloging-in-Publication Data
Palmer, James (James E))
Schaum’s outline of theory and problems of introduction to digital
systems / James Palmer and David Perlman.
p. c.m.—{(Schaum’s outline series)
Includes ingdex.)
ISBN 0-07-048439-2
1. Digital electronics. . 2. Logic circuits. 1. Perlman, David
(David E)) IL Title. IIl. Series.
TK7868.D5SP35 1993
621.381—dc20 91-46678

CIp

McGraw-Hill 2

A Division of The McGraw Hill Companies

Preface

The goal of this book is to introduce a unified design methodology into the
introductory course in digital systems. It is based on the course “Introduction to
Digital Systems”™ which is offered to freshmen and incoming transfer students in the
electrical engineering curriculum at the Rochester Institute of Technology.

As is usual in books on this subject, the first chapter describes number systems
in general and the binary system in particular as a prelude to introducing the two-

valued logical variable and signals which represent it in all computer and digital
circuits.

The next three chapters describe a coherent design procedure for systems using
combinatorial (or combinational) logic. Three different means of specifying a com-
binatorial problem—the truth table, Boolean equations, and logic diagrams—are
discussed in Chapter 2, while Chapter 3 deals with the manipulations of Boolean
algebra and contains additional material on the construction and interpretation of
Karnaugh maps. Here, the design problem is analyzed at a purely logic level, inde-
pendent of hardware considerations, and the relation between K maps, Boolean
equations, and logic diagrams is explored. Chapter 4 presents a structured approach
to the hardware implementation of logic using mixed-logic methodology. The result
is a totally unambiguous design tool which yields functional logic circuitry while
preserving the identity of the original underlying Boolean relations.

Chapter 5 offers a description of commonly used MSI and LSI combinatorial
logic elements with emphasis placed on devices (such as multiplexers and ROMs)
which can be programmed for specific applications.

The remainder of the book is primarily concerned with synchronous sequential
logic. The construction and use of timing diagrams is developed in Chapter 6 where
computer-aided design tools such as schematic capture and simulation software are
introduced. The logical function of basic memory elements (flip-flops) is discussed in
Chapter 7 and some important MSI and LSI combinations of flip-flops are covered
in Chapter 8, which deals with registers, counters, and data storage devices. In
Chapter 9, the basic operation of programmable devices containing both com-
binatorial logic and flip-flops is discussed. Chapter 10 illustrates both traditional
design procedures and the use of algorithmic state machine charts as design tools
for synchronous sequential logic and for simple state machines. Chapter 11 takes a
nontraditional view of logic elements as control device components and provides an
introduction to programmable gate arrays and their operation.

A word about symbols is appropriate here since, unfortunately, no single nota-
tion has achieved universal acceptance. While the bubble has been used for many
years, in positive logic notation, to indicate logical inversion, it is also currently
used as an alternative to the half-arrow to denote a low-TRUE signal in mixed logic
systems. Since reserving the half-arrow to exclusively designate low-TRUE is less
ambiguous, the authors have emphasized this notation for use in developing the
unified design process presented in chapters 2-4. Bearing in mind, however, that
most currently available schematic capture and simulation software packages
produce bubbles and not half-arrows, we cannot arbitrarily banish the low-TRUE
bubble. Its application is discussed in Section 4.3 and, it will be found scattered
throughout the book (as in Figs. 4-76, 4-79 and 5-38) in order to present students

iii

PREFACE

with examples of the symbology that they are likely to come across in “the real
world”,

The situation is no less confused when it comes to denoting connections (or lack
thereof) in programmable logic devices. In chapters 9 through 11, “x’s”, solid circles
or solid rectangles are used to indicate connections while hollow circles or no
symbol at all indicate the lack of a connection. Since, in all likelihood, the reader
will come across all or several of the above conventions, it was decided to present a
generous sprinkling of each in the examples and problems, taking care to avoid any
ambiguity in the meaning of a symbol.

This book is designed to function as either a text for an introductory course in
the design of digital systems or for use as a supplement to other textbooks. Typical
of the Schaum’s Outline Series, it contains numerous worked examples as well as
supplementary problems with answers. It is important to note that in design there
are often several valid solutions to a given problem. In these cases, the authors have
used their best judgment in selecting the solution given and, when appropriate, have
presented alternative approaches to a representative group of problems as new
techniques are developed in successive chapters.

It will be noted that many of the logic and timing diagrams in this book have
been computer generated and several generic observations concerning schematic
capture and simulation appear in the text and in App. C. This is a natural conse-
quence of the fact that it has become increasingly difficult to treat the design of
digital systems without reference to Electronic Design Automation (EDA) software.
The authors have chosen to use LogicWorks™, a somewhat scaled-down version of
DesignWorks™ digital logic design software from Capilano Computing Systems
Ltd., because it is an extremely user-friendly simulation package which is attractive-
ly priced for educators and students. Interested readers should write Capilano at
406-960 Quayside Drive, New Westminster, B.C., Canada V3M 6G2 or call (800)
444-9064 or (604) 522-6200 for further information and/or a demonstration disc.

The authors would like to express their appreciation for the helpful comments
of Dr. Charles Schuler who reviewed the manuscript and kept our spirits up with
constructive encouragement. We would also like to express our appreciation to
several “generations” of undergraduate students at RIT who gave us invaluable
feedback on the effectiveness of our pedagogy and the accuracy of problem solu-
tions. In the not so distant past, the creation of hundreds of diagrams integrated
with the text required the acknowledgment of gargantuan (and incredibly patient)
effort by one or more harassed secretaries and/or artists. We need make no such
mention here since the job was done “in house” with the aid of an Apple Macintosh I1*
computer running two screens—one for drawing and the other for text, which
made the project reasonably manageable and usually enjoyable. We do, however,
want to especially acknowledge the patience and support of our wives, Mary Palmer
and Marjorie Lu Perlman, both of whom put up with a lot of lost cohabitation
during the many late nights and weekends that went into this project.

JAMES E. PALMER
Davip E. PERLMAN

* Apple and Macintosh are registered trademarks of Apple Computer, Inc.

Contents

Chapter I NUMBERS AND THE BINARY SYSTEM

1

1.1 Introduction . 1

1.2 Number Systems . 1

1.3 Conversion between Bases . 4

1.4 Basic Binary Arithmetic . 5

1.5 Codes 7

1.6 Error Detection and Correctlon 11

Chapter 2 DESIGN OF COMBINATIONAL LOGIC I 24
21 Combinational Logic .. 24

22 Truth Tables e e e e e e e 24

2.3 Boolean Equations and Basw Loglcal Functlons - e e 26

24 The Relation between Boolean Equations and Truth Tables Coe e e 29

25 LogicDiagrams. 30

Chapter 3 DESIGN OF COMBINATIONAL LOGIC II: MANIPULATION 50
3.1 Introduction . . . e e 50

3.2 Boolean Algebra Basxcs e e e e e e e 50

3.3 Hardware Implications o L. 54

34 BasicKMaps . . . e e e e e 54

3.5 Further Applications of K Maps e e e 57

Chapter 4 HARDWARE AND THE MIXED-LOGIC CONVENTION 86
4.1 Introduction L L. Lo L 86

42 Gate Hardware . . . C e e e e 86

4.3 Mixed Logic as a Design Tool C e e 87

44 Mixed Logic as a Descriptive Convention 94

4.5 Uses of Mixed Logic in Troubleshooting 96

Chapter § MSI AND LSI ELEMENTS 128
51 Imntroduction . 128

5.2 Multiplexers . . . O 371

53 Decoders and Demultlplexers O k.

54 TheRead-Only Memory(ROM) 134

Chapter 6 TIMING DIAGRAMS 167
6.1 Introduction ... 167

6.2 Microtiming Diagrams . 167

vi

CONTENTS

6.3 Hazards . 169
6.4 Macrotiming Diagrams 171
6.5 Timing Simulations . 172
66 Feedback in Combinational C1rcu1ts 174
Chapter 7 THE FLIP-FLOP 194
7.1 Introduction . 194
72 The Basic Latch . 194
7.3 The Chatterfree Switch 195
74 Clocked RS Flip-Flop 196
7.5 The JX Flip-Flop . . 198
7.6 JK Flip-Flop with Preset and Clear . 200
7.7 Signal Propagation within the Flip-Flop 201
7.8 Other Flip-Flop Types 203
79 Flip-Flop Triggering and Txmmg 205
7.10 Metastability . 207
Chapter § COMBINATIONS OF FLIP-FLOPS 233
8.1 Registers 233
8.2 Parallel-Serial Conversxon 236
8.3 Ripple Counters 237
84 Rate Multipliers 240
8.5 Random-Access Memory 241
Chapter 9 APPLICATION SPECIFIC DEVICES 269
9.1 Introduction . . 269
9.2 Programming Technologles 269
9.3 Proms and EPRoms 270
9.4 Programmable Array Logic (PAL*) 272
9.5 The Programmed Logic Array (PLA) 271
9.6 Gate Arrays . . 279
9.7 Programmable Gate Arrays 281
9.8 Full Custom Design 281
Chapter 10 DESIGN OF SIMPLE STATE MACHINES 306
10.1 Introduction . . 306
10.2 Traditional State Machme Desrgn wnh D Flrp Flops . 307
10.3 Design with JK Flip-Flops . 309
104 Design for Programmable Logic Dev1ces 312
10.5 The ASM Chart . . 313
10.6 Design from an ASM Chart: Boolean Irnplementatlon for Mrmmal Number of
Flip-Flops . . 316
10.7 Design from an ASM Chart One Hot Controller Implementatlon 318
10.8

Design from an ASM Chart: State Table Entry to a Programmable Logic

Device .

319

CONTENTS

vii

109 Clock Skew in State Machines . .. 321
10.10 Initialization and Lockout in State Machines 322
Chapter 1 1 ELECTRONICALLY PROGRAMMABLE FUNCTIONS 353
11.1 Introduction . 353
11.2 Basic Componenis . . 353
11.3 Programmable Gate Arrays 354
11.4 Arithmetic Logic Units 358
11.5 Programmable Registers . 362
Ai)pendix A BASIC BOOLEAN THEOREMS AND IDENTITIES . 381
Appendix B STANDARD LOGIC SYMBOLS 382
Appendix C SOME COMMENTS ON DIGITAL LOGIC SIMULATION . 388

INDEX .

391

Chapter 1

Numbers and the Binary System

1.1 INTRODUCTION

In modern digital systems it is necessary to electronically store and process large quantities of data
in the presence of electrical noise and interfering signals. The data is usually in a binary (two valued)
form since this allows the use of reliable and easily replicated storage and computational devices
comprising large numbers of logically connected electronic switches fabricated within integrated circuits.
Such devices, containing thousands (and in many cases, millions) of transistors, are inherently resistant
to faults because the voltage or current levels representing the two binary states are far enough apart
to prevent errors caused by spurious interference. Various data encoding and error checking schemes,
such as Gray coding and parity checks, are often used to reduce the already low probability of undetected
errors. Since the binary number system is universally employed in digital processing, it is useful to
understand its relationship to other number systems, as well as the properties of number systems in
general and the methods of conversion from one to another.

1.2 NUMBER SYSTEMS

In everyday use, numbers are represented in the decimal (base 10) system which has 10 symbols (0,
1,2,3,4,5,6,7,8,9). This system is weighted in that it makes use of a positional notation wherein the
value assigned to a particular digit is determined by its position in the sequence of digits which represents
a given number. Consider the base 10 number 853828. The digit 8 occurs three times in the sequence,

but each occurrence has a different weight because the digit occupies a different position corresponding
to a power of the base. This arrangement is shown below.

10° 10* 10° 10> 10" 10° Column weights
8 5 3 8 2 8 Digits

853828 = 8 x 100,000 + 5 x 10,000 + 3 x 1000 + 8 x 100 + 2 x 10 + 8 x 1

The left-most 8 is weighted by 10°, the next 8 by 102, and the last by 10°. This positional notation is
easily extended to decimal fractions, in which case, negative powers of the base 10 are used:

0.725=7x 1071 +2x 1072+ 5x 1073
The Binary System

It is possible to express a number in any base. In the binary case, the base is 2 and only two
symbols are needed (0 and 1). Each digit is called a “bit” and, again, positional notafion is used. To find
the decimal equivalent of any binary number, merely write the decimal equivalent of each of the powers
of 2, multiply by the appropriate binary digit, and add the results.

EXAMPLE 1.1 Express the binary number 1100111.1101 as a decimal (base 10) number.
Since the integer part has seven digits (bits), the most significant has a weight of 2% or 64. Its decimal equiva-

lent may be easily computed as
1100111 =1 x 25 + 1 x 254+ 0x2* + 0 x 23 + 1 x22 + 1 x 21 +1 x2°

=1x64+1x324+0x164+0x8+1x4+1x2+1x1
=103,,

2 NUMBERS AND THE BINARY SYSTEM [CHAP. 1

For the decimal part,

2101 =1x2"141x2"240x27 3 +1x27*
=1x05+1x025+0x0.125 + 1 x 0.0625
=0.8125,,

Since binary numbers require only two symbols, they are ideally suited for representation by elec-
tronic devices since only two easily distinguishable states, such as ON and OFF (conducting and
nonconducting), are required.

The advantages of binary are best illustrated by considering the effect of noise or interference on the
performance of a data-processing system. In the binary case, when data is to be transmitted or retrieved
from storage, it is necessary for the receiver to determine which of two levels a given signal is nearer. A
threshold for decision can be set up midway between these two levels so that any additive noise which is
less than the difference between the signal level and the threshold is ignored. With decimal storage on
the other hand, a system with the same overall voltage range assigned to its signals has a much smaller
noise immunity because the given range must be divided into 10 separate levels (see Fig. 1-1).

V max
Noise —b—fomoooomaoaa
margin —F Voltage 1
"""""""" range |~ ogm------ "z'vmax
O, Noise
margin
R
V=0
(a) Decimal storage (b) Binary storage

Stored signal levels
Detection thresholds -----=-=-----

Fig. 1-1

In data systems, we speak of a figure of merit called noise margin which is defined as the maximum
noise voltage (or current) which can be tolerated without causing an undesirable output change.

EXAMPLE 1.2 Compare the basic noise margins of binary and decimal data systems having ideal hardware
components.

For the binary case, a 1 is stored as V,,,, [typically 5 volts (V)] and a 0 as approximately 0 V. The threshold
would be set at V. /2, and any noise less than this value is ignored. In the decimal system, there would be 10
equally spaced storage levels between 0 and V,,, (0, V,.../9, 2 V,.../9, etc.) and there would be thresholds set up
halfway between adjacent storage levels (V,,,./18, 3 V. /18, etc.). Any noise which is more than V_, /18 would
result in an erroneous data reading. For the binary case with V,, = 5 V, the noise margin would be 5/2 =25 V.
The decimal system with the same V__ , on the other hand, would have a noise margin of only (5/9)/2 = 0.28 V
which is obviously less desirable than the binary case.

CHAP. 1] NUMBERS AND THE BINARY SYSTEM 3

Octal and Hexadecimal Systems

While the binary system provides great practical advantages for the storage and processing of data
in digital systems because it makes use of only two symbols, a given number expressed in binary
consists of a much longer sequence of digits than the corresponding decimal number. If data is to be
entered manually, only a two-key keyboard would be needed, but these keys have to be struck many
times. This data-entry problem is often solved by treating binary numbers in groups.

Octal numbers make use of 3-bit groups in accordance with the following table:

Binary Octal Digit

000
001
010
011
100
101
110
m

NNV R W~ O

Each octal symbol represents the numerical equivalent of a binary 3-bit group, and the eight symbols
constitute a base 8 number system. In this case, an eight-key keyboard is necessary for data entry, but it
need be struck only one-third as often as a binary keyboard.

EXAMPLE 1.3 Express the octal number 247 as a decimal and a binary number.

The octal number is positional, with the lowest-order (right-most) digit being weighted by 8° =1 and the
highest-order digit by 82 = 64. Thus 247 =2 x 64 + 4 x 8 + 7 x 1 = 167,,.
Reference to the preceding table indicates that conversion to binary is easily achieved by grouping:

247

/TN

010 100 111

This conversion is easily checked by determining the decimal equivalent of the resulting binary number,
10100111. Note that leading zeros may be dropped. The most significant bit is in the eighth place to the left and is
therefore weighted by 27 = 128. Thus, 10100111 =128 + 32 + 4 + 2 4+ 1 = 167.

A general method of converting between numbers of different bases is discussed in Sec. 1.3.

Hexadecimal notation extends the grouping idea to 4 bits and constitutes a base 16 number system.
The table of corresponding bit groups and hexadecimal symbols is shown below.

Binary Hex Binary Hex Binary Hex Binary Hex

0000 0 0100 4 1000 8 1100 C
0001 1 0101 5 1001 9 1101 D
0010 2 0110 6 1010 A 1110 E
0011 3 o111 7 1011 B 1111 F

The hexadecimal symbols 0 to 9 are the decimal equivalents of the first ten 4-bit binary groups. To
represent the last six groups, we need new symbols since there are no single decimal digits which
represent numbers larger than 9. The first six letters of the alphabet are used for this purpose as shown.

In the hexadecimal system, 16 keys are needed for a keyboard, but the striking rate is only one-fourth of
that required with a binary keyboard.

4 NUMBERS AND THE BINARY SYSTEM [CHAP. 1

EXAMPLE 1.4 Hexadecimal-binary conversion. (@) Convert 1101011100110 into an equivalent hex number. (b)
Convert 4B2F into binary.

(a) 1101011100110 = (0001)1010)(1110)0110) Group by '4s

1 A E 6 Convert individually
= $1AE6 The dollar sign is commonly used to indicate a hex number
(b) 4B2F = (0100)1011)0010)(1111) Convert individually
= 0100101100101111 Ungroup
= 100101100101111 Drop leading zero

1.3 CONVERSION BETWEEN BASES

The following is a general method that may be used to convert numbers between any pair of bases:

1. Integers and fractions are converted separately.

2. The integer portion is converted using repeated division by the new base and using the sequence of
remainders generated to create the new number. Arithmetic is done in terms of the old base.

3. The fractional part is converted by repeated multiplication by the new base, using the generated
integers to represent the converted fraction. Again, the arithmetic is done in the old base.

EXAMPLE 1.5 Convert the decimal number 278.632 into an equivalent binary number.
Step 1. The integer is 278. The fraction is 0.632.
Step 2. Integer conversion.

Division Generated remainder

2)218
2)139 0
2)69 1
2)34 1
2)17 0 Read up to form: 100010110
2)8 1
24 0
2)2 0
2)1 0
0 1

Most significant bit (MSB)

Note that once a remainder has been formed, it plays no further role in the arithmetic. The integer process will
always terminate.

Step 3. Fractional conversion.
Multiplication Generated integer

0.632 x 2 =1.264
0.264 x 2 = 0.528
0.528 x 2 = 1.056
0.056 x 2 =0.112
0.112 x 2=0.224
0.224 x 2 = 0.448
0.448 x 2 = 0.896
0.896 x 2 = 1.792
0.792 x 2 = 1.584

MSB

Read down to form: .101000011

—_—- 0 O O O = O =

Note that once an integer has been formed it plays no further role. This process may not terminate; it is usually
carried on only until accuracy requirements have been satisfied.

CHAP. 1] NUMBERS AND THE BINARY SYSTEM 5

EXAMPLE 1.6 Convert the decimal number 123.456 to an equivalent octal (base 8) number.

Integer conversion:

Division Generated remainder
8123
8)15 3 ‘
8)1 7 Read up to form 173
0
Fractional conversion:
Multiplication Generated integer
0.456 x 8 = 3.648 3
0.648 x 8 = 5.184 5 Read down to form 0.3513
0.184 x 8 = 1472 1
0472 x 8 = 3.776 3

The process has been arbitrarily terminated.

123.456,, = 173.3513, (approximately)
Check:

173 =1 x64+7x8+3x1=123,,
0.35133 = 3 x 0.1250 + 5 x 0.0156 + 1 x 0.0020 + 3 x 0.0002 = 0.4556,,

1.4 BASIC BINARY ARITHMETIC

All the number systems discussed previously are positionally weighted, making it possible to do
arithmetic one digit at a time with the use of carries. Complete addition and multiplication tables can
be developed by repetitive application of the rules for a single digit.

Binary Addition

The binary addition table is quite simple and is shown below, where the two digits involved are
denoted by X and Y. C; is the carry-in from a preceding lower-order addition.

This is the classic 1 + 1 =2

Carry, C; 0 0 0 0 1 1 1 1
X digit 0 0 1 1 0 0 1 1
Y digit 0 1 0 1 0 1 0 1

0 t 1t {(10)] 1 10 10 11

Note the presence of a carry-out which is generated in all single-bit additions where the result exceeds 1.

EXAMPLE 1.7 Addition of two long digit strings.
011110001 «—

X number 1010111001

Y number 0011010101

Sum 1110001110

Carry out 0011110001

When added, each pair of digits produces a sum and a carry-out when the sum exceeds 1. This carry becomes
the carry-in for the next higher order digit as shown. When, for example, X = 1, Y = 1, and the carry-in is also 1,

6 NUMBERS AND THE BINARY SYSTEM [CHAP. 1

the sum is 3 (binary 11). The left bit, having a decimal value of 2, is carried to the next higher order column, leaving
a 1 in the sum position directly below.

Binary Subtraction

Subtraction could be discussed in a similar fashion, making use of a borrow and producing a
difference. In practice, however, subtraction is accomplished by the same hardware which is used for
addition through the use of complementary arithmetic. In the binary case, negative numbers are rep-
resented as the 2s complement of the corresponding positive binary number (see Examples 1.8 and 1.9
below). Subtracting a given number X from another binary number Y is accomplished by taking the 2s
complement of X to convert it to —X and adding this to Y. In this method, the left-most digit is

interpreted as a sign bit (0 for positive, 1 for negative) which is treated as any other bit except that a
carry-out from the addition of sign bits is neglected.

The 2s complement of a binary number is obtained by exchanging the 1s and Os of the original
number and adding 1 to the resuit.

EXAMPLE 1.8 Subtract 185, from 230,, by converting to binary and using 2s complement arithmetic.

How many binary digits will be required for the computation is determined by the largest number (including
the answer). In this case, the number 230 is largest and requires 8 bits plus one additional for the sign bit. Thus, the
binary equivalent of 185 is written 010111001. Note that leading zeros have no effect on the value.

We convert this to a negative number by taking its 2s complement:

Step 1: Invert the 1s and 0s.

010111001 — 101000110
Step 2. Add 1.
101000110

+ 1
101000111 = —185,,

Next, again using nine places, convert 230 to binary and add this to the result of step 2 above:

+230 = 011100110
—185 = 101000111
1000101101

Neglecting the sign bit carry (extra bit on the left) yields 000101101 whose left-most bit is 0, indicating that the
result is positive.

Check: 000101101, converted to decimal, is +45.

EXAMPLE 1.9 Subtract 230,, from 185,, by converting to binary and using 2s complement arithmetic.

The binary equivalent of 230 is 011100110, and its 2s complement is obtained by inverting the 1s and Os and
adding 1:

—230 = 100011010
Next, we add this to the binary equivalent of 185:

—230 = 100011010
+185 = 010111001
111010011

The left-most bit is a 1 indicating that the result is negative. To obtain the desired magnitude, we take the 2s
complement of our result since —(—X) = X.

000101100
+ 1
000101101

The decimal equivalent is 45 which we have already determined to be negative.

CHAP. 1] NUMBERS AND THE BINARY SYSTEM 7

1.5 CODES
Binary-Coded Decimal

Binary-coded decimal (BCD) numbers are essentially decimal numbers encoded in a convenient
two-valued (binary) form. Each decimal digit is represented, in order, by its 4-bit binary equivalent; 4
bits being the minimum number required to represent the decimal integers O to 9. Since there are 16
possible combinations of 4 bits, six of these are unused in the BCD system.

EXAMPLE 1.10 Compare the binary and BCD representations of the decimal number 278.
In Example 1.5, it was shown that the binary equivalent of 278 is 100010110. The conversion was achieved by
treating the given decimal number as a whole. In BCD conversion, each decimal digit is encoded separately:

278, = (0010)(0111)(1000) = 001001111000 (BCD)

2 7 8

Gray Code

Another two-valued code which has engineering significance is the Gray code, sometimes referred

to as reflected binary code. It is not a positionally weighted code and, for this reason, is not suitable for
arithmetic operations.

Single-bit Gray code is identical to a single-bit binary code:

0
1

Two-bit Gray code is obtained by “reflecting” the single-bit Gray code in an imaginary mirror as
shown below. For the second digit, Os are added above the reflection axis and 1s below it.

Add Os <g e Single-bit code

_\ Reflection axis
1
Add 1s<1 Reﬂection

Three-digit Gray code is formed by using the two-digit code as a basis for reflection and again
adding Os above and 1s below.
000
001
011
010
110
111
101
100

The process can be repeated for any number of digits.

The reflection process used in Gray code generation ensures that this code will have a unit distance
property, meaning that successive code groups will differ in only 1 bit. For reference, a 4-bit Gray code
is shown in Table 1.1 along with its decimal and binary equivalents. Observe the unit distance property

of the Gray code as numbers progress through the sequence. Contrast this with the binary code where,
for example, on passing from 7 to 8, all bits change.

Reflection axis

8 NUMBERS AND THE BINARY SYSTEM [CHAP. 1

Table 1.1
Decimal Binary Gray Decimal Binary Gray
0 0000 0000 8 1000 1100
1 0001 0001 9 1001 1101
2 0010 0011 10 1010 1111
3 0011 0010 11 1011 1110
4 0100 0110 12 1100 1010
5 0101 0111 13 1101 1011
6 0110 0101 14 1110 1001
7 0111 0100 15 1111 1000

One of the main applications of the Gray code is in measurement, a typical example of which is
described in Example 1.11.

EXAMPLE 1.11 Position Encoding Wheel. In a robotic system, the motion of the “arm” is often directed by a
microprocessor which generates a signal commanding certain rotations of joints. This command is often applied to
circuitry which controls the direction and speed of an electric motor. It is necessary for the computer to know the
actual position of a joint and to compare it with the command in order to be sure that the desired motion has been
carried out. Position measurement is often accomplished by connecting a small code wheel to the motor shaft. This
wheel consists of concentric circular tracks which contain patterns of transparent and opaque sectors as shown in
Fig. 1-2. Each track is individually associated with a light source and a light detector. When a transparent sector of
the track is between the source and the detector, light is transmitted and an electric signal is produced by the
detector. No output occurs when an opaque sector passes between the source and detector.

5 4 3 2
Light source |:|>J'< [[] Detector
7 0
8 15
14
13
10 11 12
(a) Binary coded (b) Gray coded Code wheel (side view)

Fig. 1-2

The wheel in Fig. 1-2a is binary coded with the outermost track corresponding to the least significant digit.
With a radial array of separate source-detector pairs aligned with each track, we see that as the wheel rotates, each
sector passing the detector array will produce unique combinations of outputs which may be interpreted as binary
numbers. For example, if the source-detector array is located along a vertical line at the top of the wheel and an
illuminated detector is considered to produce a binary 1, then if the wheel rotates counterclockwise by somewhat
more than one sector, detector outputs will indicate the binary number 0010. In the case of the wheel in Fig. 1-2b,
sectors are identified by Gray-coded numbers.

Consider the binary-coded case where the wheel is positioned so that the detector array is located along the
dividing line between sectors 7 and 8. Note that the sectors on each side of the boundary are different for all tracks.
The light sources and detectors are not individually aligned with perfect tolerance, nor are the source emissions of
zero width; the light spreads. If a light source is on the line, it may or may not cause a detector output. Thus, the
binary number produced may be anywhere from all Os to all 1s depending upon alignment and light spread. Gross
€rrors can occur.

CHAP. 1] NUMBERS AND THE BINARY SYSTEM 9

On the other hand, if we use a Gray-coded wheel, because of the unit distance property, there is only one track
per sector where light transmission on each side of a sector boundary is different, so only one Gray-coded bit can
be erroneous. The Gray-coding scheme can only produce numbers corresponding to adjacent sectors, and, conse-
quently, no large errors are possible.

While Gray code is quite suitable for measurement, it is not useful for arithmetic because, as pre-
viously mentioned, it has no positional weighting.

Conversion Between Binary and Gray Codes

This problem is handled efficiently by noting that the Gray code can be considered to be a
“differentiated” version of the equivalent binary. Conversion proceeds according to the following rules.

A. Conversion from binary to Gray
1. The left-most digits are the same in both systems.

2. Read the binary number from left to right. A change (0 to 1 or 1 to 0) generates a 1 in the
Gray-coded number; otherwise a 0 is generated.

EXAMPLE 1.12 Binary-Gray conversion. Convert 01101001101 binary to Gray.

Binary: 01 1 01 0 01 1 01
I
DCscCcCccscscc S = same; C = change; D = duplicate
Ll

Gray: 01011101011

01101001101 (binary) = 01011101011 (Gray)
B. Conversion from Gray to binary
1. The left-most digits are the same in both systems.
2. Read the Gray number from left to right. A 1 means that the next binary digit must change; a 0 means the

next binary digit is identical to the digit on its left.

EXAMPLE 1.13 Gray-binary conversion. Convert 1000110101010 Gray to an equivalent binary number.

Gray: 1 000110101010
N T O O B O
DSSSCCSCSCSCS
L

Binary: 1111011001100

1000110101010 (Gray) = 1111011001100 (binary)

ASCII Code

Not all data stored and processed by computer is numerical. Because of the practical advantages of
the binary system, other sorts of data are stored in two-valued (binary-like) form as well. The most
commonly encountered alphanumeric code is the American Standard Code for Information Interchange
(ASCII) of which some representative keyboard characters are presented in Table 1.2. This list is not
intended to be exhaustive; merely illustrative. Note that decimal digits are listed as BCD-encoded digits
preceded by 011 (9 = 011 1001). Other three-digit prefixes are used for nonnumeric data.

