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" Translators® Preface

We are happy to have been asked to translate into English this well-
known book by Prof. Dr. Zurmiihl. The popularity and usefulness which
this book has enjoyed amongst the German-knowing public have provided
enough confidence that it is bound to be of great value to the English-
knowing students of Mathematics. '

Every translator is faced with a dilemma, namely, whether he should be
literally faithful to the original or aim at the correct idiom of the language
into which the translation is made at the risk of deviating, though slightly,
from the original. We have all along tried to strike a balance between these
conflicting objectives and accepted a ‘least square fit” as the best solution.

This book should find a place on the desks of all those who are in-
terested in applying numerical methods to practical problems. An over-
view of the salient features of the book is contained in the author’s
prefaces. We cannot possibly do better than referring the reader to them.

In a book of this size the number of printing errors located (and of
course corrected!) by us is very small. Suggestions for improvement of the
translation in all its aspects are welcome.

We thank the authorities of the Indian Institute of Technology, Madras
for having permitted us to undertake this project. A few of our colleagues
have read through portions of the translation and offered their suggestions,
for which we are thankful to them. Mr. Venkateswaran did an excellent
job in typing the entire manuscript. It is a pleasure to express our ap-
preciation to M/s. Springer-Verlag and in particular to Mr. N. K. Mehra
and Allied Publishers for their co-operation. »

R. SUBRAMANIAN
Madras 600036 - ' P. ACHUTHAN
January 1977 K. VENKATESAN



Preface to the Fifth Edition

In spite of the short period of time, since the appearance of the last edi-
tion, it appeared to me that a revision of many sections of the book was
desirable and this was essentially due to the increasing influence of com-
puters in all the areas of numerial mathematics. As before, the book will be
an introduction to the fundamentals of numerical methods; it is not a text-
book on computer science and programming. Still I felt it useful to include
a brief introduction to the programming language ALGOL, which nowa-
days is an indispensable tool for an engineer to precisely formulate and
solve his numerical problems and which gives him an easy access to the
computers.

Besides many small improvements, the following parts of the book have
been revised for this edition; the major deciding factor being easy adapta-
tion to computer calculations. As a counterpart to Newton’s method for
solution of equations, the Regula falsi is introduced in the form of an
algorithm with an almost-quadratic convergence; this approach has the es-~
sential advantage that it does not necessitate any differentiation. For itera-
tion with linear convergence—this idea will be clarified later—Aitken’s
process for accelerating the convergence will be adopted, as it has proved
to be an important general principle. The section on the Routh criterion is
new and a method of Collatz (based on it) for solution of polynomial equa-
tions has been extended. In numerical integration, the method of Gauss
has been presented at length on account of its fundamental importance.

The fifth chapter has been rewritten under the new title “Approx-
imation”. From the approximation in the least-squares sense, introduced
at the beginning, the trigonometric approximation is derived. There is a
new section on uniform approximation, an important problem today, for
which is needed the powerful approximation method based on the
trigonometric interpolation.

For the differential equations the automatic (computer) step-control of
the Runge-Kutta method is specially noteworthy. For eigenvalue problems
the multipoint (“Mehrstellen”) difference method is based on the new ap-
proach of Falk. Finally, a new section brings the Ritz method to a
schematic form—which can be used for general variational problems of
ordinary differential equations and through which a computer solution of
even complicated eigenvalue problems is made possible. By judicious
omissions, I have attempted to maintain the original size of the book.

I have to thank my Chief Engineer, Mr. D. Stephan, for his valuable
help in writing the introduction to ALGOL. I also have to thank Messrs



VI

H. J. Amtsberg and H. Weirich for carrying out numerical calculations
and for help in proof-reading. I thank Mrs. H. Heydebreck for typing the
manuscript. Finally, my thanks are due to Springer-Verlag for the fine get-
up of the book—for which they are well known—and for their ready com-
pliance with all my wishes.

Berlin 33, Summer, 1965 :
Trabener Str. 42 RUDOLF ZURMUHL



From .the Preface to the Second Edition

This book is conceived of as a supplement and continuation of the basic
course on Mathematics in technical schools. It is intended to stimulate the
young students of Engineering, to pursue those branches of mathematics
that are fundamental tb the numerical treatment of engineering problems
of all kinds, i.e. to numerical methods in practical mathematics. It in-
troduces the theory and practical aspects of these methods, equal
emphasis being placed on lucid development of the basic ideas and on the
details of numerical calculation. The book can also be used by the practis-
ing engineer, when, in solving his problems, he has to apply numerical
methods. 3

A book meant for engineers and physicists must be different in many
respects from the one meant specifically for the mathematicians. But it
should certainly be equally reliable and accurate. While the mathemati-
cians should be dedicated to developing new methods, physicists and
engineers learn the practical aspects of the methods in the first place, in
order to employ them as tools in their specific professional work. For the
application of these methods in a meaningful and correct fashion, one
should certainly understand their mathematical basis. A mere collection of
recipes will not be useful. Only a person, who has understood well the
principle of a method, will be in a position to estimate its limitations and
range of applicability and to choose the best from among the many
methods. It is, therefore, also one of the principal objectives of this book to
clearly work out the method underlying the mathematical formulation of
the problems and to show, in individual cases, the way that leads from the
problem to the solution. Otherwise, in consonance with the purpose of the
book, such discussions as will serve the practical solution of the problems
will be spotlighted, while problems which are of interest more to the
mathematician will be relegated to the background.

The book, therefore, does not completely exhaust all the methods
developed for a given problem. Rather, it is considered to be one of its
main tasks to make a careful selection of the methods to be treated—a
selection, which is naturally determined by personal tastes.

Finally, a mathematical text-book, meant for the engineer, must also
give a comparatively well-informed preparatory training in the calculation,
—which has been often neglected in the past. As a prerequisite, the reader
is assumed to have a knowledge of the basic course in mathematics and
for the first part of the book only the material covered in the first two
semesters. Additional material will be given in the later parts. The presen-
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tation is deliberately wide and detailed, so that, I hope, even the reader
who is not well versed in mathematical literature can follow it with some
co-operation and patience on his part; he has only to have enough inclina-
tion for, and interest in, the subject.

Darmstadt
March, 1957 v RUDOLF ZURMUHL
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