Introduction o werio

G

0 anguages

\ Computato



Introduction to Languages
and The Theory of
Computation

Third Edition

John C. Martin
North Dakota State University

G

Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis
Bangkok Bogota Caracas KualaLumpur Lisbon London Madrid Mexico City
Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto



McGraw-Hill Higher Education g7

A Division of The McGraw-Hill Companics

INTRODUCTION TO LANGUAGES AND THE THEORY OF COMPUTATION
THIRD EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221
Avenue of the Americas, New York, NY 10020. Copyright © 2003, 1997, 1991 by The
McGraw-Hill Companies, Inc. All rights reserved. No part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or retrieval
system, without the prior written consent of The McGraw-Hill Companies, Inc., including,
but not limited to, in any network or other electronic storage or transmission, or broadcast for
distance learning.

Some ancillaries, including electronic and print components, may not be available to
customers outside the United States.

This book is printed on acid-free paper.

International 1234567890 QPF/QPF098765432

Domestic 34567890QPF/QPF098765
ISBN-13: 978-0-07-232200-2 ISBN-13: 978-0-07-119854-7 (ISE)
ISBN-10: 0-07-232200-4 ISBN-10: 0-07-119854-7

Publisher: Elizabeth A. Jones

Developmental editor: Melinda Dougharty
Executive marketing manager: John Wannemacher
Lead project manager: Peggy J. Selle

Lead production supervisor: Sandy Ludovissy
Lead media project manager: Audrey A. Reiter
Designer: K. Wayne Harms

Cover/interior designer: Rokusek Design
Cover image: Ryoichi Utsumi (IMA) Photonica
Compositor: Techsetters

Typeface: 10/12 Times Roman

Printer: Quebecor World Fairfield, PA

Library of Congress Cataloging-in-Publication Data

Martin, John C.
Introduction to languages and the theory of computation / John Martin.—3rd ed.
p. cm.
Includes index.
ISBN 0-07-232200-4—ISBN 0-07-119854-7
1. Sequential machine theory. 2. Computable functions. I. Title.

QA267.5.84 M29 2003
511.3—dc21 2002070865
CIP
INTERNATIONAL EDITION ISBN 0-07-119854-7
Copyright © 2003. Exclusive rights by The McGraw-Hill Companies, Inc., for manufacture
and export. This book cannot be re-exported from the country to which it is sold by
McGraw-Hill. The International Edition is not available in North America.

www.mhhe.com



TO PIPPA



ABOUT THE AUTHOR

John C. Martin attended Rice University both as an undergraduate and as a graduate
student, receiving a B.A. in mathematics in 1966 and a Ph.D. in 1971. He taught for
two years at the University of Hawaii in Honolulu before joining the faculty of North
Dakota State University, where he is an associate professor of computer science.



PREFACE

his book is an introduction to the theory of computation. It emphasizes
formal languages, models of computation, and computability, and it includes
an introduction to computational complexity and NP-completeness.

Most students studying these topics have already had experience in the practice
of computation. They have used a number of technologies related to computers; now
they can begin to acquire an appreciation of computer science as a coherent discipline.
The ideas are profound—and fun to think about—and the principles will not quickly
become obsolete. Finally, students can gain proficiency with mathematical tools and
formal methods, at the same time that they see how these techniques are applied to
computing.

I believe that the best way to present theoretical topics such as the ones in this
book is to take advantage of the clarity and precision of mathematical language—
provided the presentation is accessible to readers who are still learning to use this
language. The book attempts to introduce the necessary mathematical tools gently
and gradually, in the context in which they are used, and to provide discussion and
examples that make the language intelligible. The first two chapters present the
topics from discrete mathematics that come up later, including a detailed discussion
of mathematical induction. As a result, the text can be read by students without a
strong background in discrete math, and it should also be appropriate for students
whose skills in that area need to be consolidated and sharpened.

The organizational changes in the third edition are not as dramatic as those in the
second. One chapter was broken up and distributed among the remaining fourteen,
and sections of several chapters were reworked and rearranged. In addition to changes
in organization, there were plenty of opportunities throughout to rewrite, to correct
proofs and examples and make them easier to understand, to add examples, and to
replace examples by others that illustrate principles better. Some exercises have
been added, some others have been modified, and the exercises in each chapter have
been grouped into ordinary ones and more challenging ones. In the Turing machine
chapter, I have followed the advice of two reviewers in adopting a more standard and
more intuitive definition of halting.

Whether or not Part I is covered in detail, I recommend covering Section 1.5,
which introduces notation and terminology involving languages. It may also be
desirable to review mathematical induction, particularly the sections on recursive
definitions and structural induction and the examples having to do with formal lan-
guages. At North Dakota State, the text is used in a two-semester sequence required
of undergraduate computer science majors, and there is more than enough material
for both semesters. A one-semester course omitting most of Part I could cover regular
and context-free languages, and the corresponding automata, and at least some of the
theory of Turing machines and solvability. In addition, since most of Parts IV, V, and



Preface

VI are substantially independent of the first three parts, the text can also be used in a
course on Turing machines, computability, and complexity.

I am grateful to the many people who have helped me with all three editions of
this text. Particular thanks are due to Ting-Lu Huang, who pointed out an error in the
proof of Theorem 4.2 in the second edition, and to Jonathan Goldstine, who provided
several corrections to Chapters 7 and 8. I appreciate the thoughtful and detailed com-
ments,of Bruce Wieand, North Carolina State University; Edward Ashcroft, Arizona
State University; Ding-Zhu Du, University of Minnesota; William D. Shoaff, Florida
Institute of Technology; and Sharon Tuttle, Humboldt State University, who reviewed
the second edition, and Ding-Zhu Du, University of Minnesota; Leonard M. Faltz,
Arizona State University; and Nilfur Onder, Michigan Tech, who reviewed a prelim-
inary version of this edition. Their help has resulted in a number of improvements,
including the modification in Chapter 9 mentioned earlier. Melinda Dougharty at
McGraw-Hill has been delightful to work with, and I also appreciate the support and
professionalism of Betsy Jones and Peggy Selle. Finally, thanks once again to my
wife Pippa for her help, both tangible and intangible.

John C. Martin



INTRODUCTION

n order to study the theory of computation, let us try to say what a computation

is. We might say that it consists of executing an algorithm: starting with some

input and following a step-by-step procedure that will produce a result. Exactly
what kinds of steps are allowed in an algorithm? One approach is to think about
the steps allowed in high-level languages that are used to program computers (C, for
example). Instead, however, we will think about the computers themselves. We will
say that a step will be permitted in a computation if it is an operation the computer
can make. In other words, a computation is simply a sequence of steps that can be
performed by a computer! We will be able to talk precisely about algorithms and
computations once we know precisely what kinds of computers we will study.

The computers will not be actual computers. In the first place, a theory based on
the specifications of an actual piece of hardware would not be very useful, because
it would have to be changed every time the hardware was changed or enhanced.
Even more importantly, actual computers are much too complicated; the idealized
computers we will study are simple. We will study several abstract machines, or
models of computation, which will be defined mathematically. Some of them are as
powerful in principle as real computers (or even more so, because they are not subject
to physical constraints on memory), while the simpler ones are less powerful. These
simpler machines are still worth studying, because they make it easier to introduce
some of the mathematical formalisms we will use in our theory and because the
computations they can carry out are performed by real-world counterparts in many
real-world situations.

We can understand the “languages” part of the subject by considering the idea of
a decision problem, a computational problem for which every specific instance can
be answered “yes” or “no.” A familiar numerical example is the problem: Given a
positive integer n, is it prime? The number » is encoded as a string of digits, and a
computation that solves the problem starts with this input string. We can think about
this as a language recognition problem: to take an arbitrary string of digits and deter-
mine whether it is one of the strings in the language of all strings representing primes.
In the same way, solving any decision problem can be thought of as recognizing a
certain language, the language of all strings representing instances of the problem for
which the answer is “yes.” Not all computational problems are decision problems,
and the more powerful of our models of computation will allow us to handle more
general kinds; however, even a more general problem can often be approached by
considering a comparable decision problem. For example, if f is a function, being
able to answer the question: given x and y, is y = f(x)? is tantamount to being
able to compute f(x) for an arbitrary x. The problem of language recognition will
be a unifying theme in our discussion of abstract models of computation. Comput-
ing machines of different types can recognize languages of different complexity, and

xi



xii

Introduction

the various computation models will result in a corresponding hierarchy of language
types.

The simplest type of abstract machine we consider is a finite automaton, or finite-
state machine. The underlying principle is a very general one. Any system that is at
each moment in one of a finite number of discrete states, and moves among these states
in a predictable way in response to individual input signals, can be modeled by a finite
automaton. The languages these machines can recognize are the regular languages,
which can also be described as the ones obtained from one-element languages by
repeated applications of certain basic operations. Regular languages include some that
arise naturally as “pieces” of programming languages. The corresponding machines
in software form have been applied to various problems in compiler design and text
editing, among others.

The most obvious limitation of a finite automaton is that, except for being able
to keep track of its current state, it has no memory. As you might expect, such a
machine can recognize only simple languages. Context-free languages allow richer
syntax than regular languages. They can be generated using context-free grammars,
and they can be recognized by computing devices called pushdown automata (a
pushdown automaton is a finite automaton with an auxiliary memory in the form
of a stack). Context-free grammars were used originally to model properties of
natural languages like English, which they can do only to a limited extent. They are
important in computer science because they can describe much of the syntax of high-
level programming languages and other related formal languages. The corresponding
machines, pushdown automata, provide a natural way to approach the problem of
parsing a statement in a high-level programming language: determining the syntax
of the statement by reconstructing the sequence of rules by which it is derived in the
context-free grammar.

Although the auxiliary memory makes a pushdown automaton a more powerful
computing device than a finite automaton, the stack organization imposes constraints
that keep the machine from being a general model of computation. A Turing machine,
named for the English mathematician who invented it, is an even more powerful
computer, and there is general agreement that such a machine is able to carry out
any “step-by-step procedure” whatsoever. The languages that can be recognized
by Turing machines are more general than context-free languages, and they can be
produced by more general grammars. Moreover, since a Turing machine can print
output strings as well as just answering yes or no, there is in principle nothing to stop
such a machine from performing any computation that a full-fledged computer can,
except that it is likely to do it more clumsily and less efficiently.

Nevertheless, there are limits to what a Turing machine can do; since we can
describe this abstract model precisely, we can formulate specific computational prob-
lems that it cannot solve. At this point we no longer have the option of just coming
up with a more powerful machine—there are no more powerful machines! The exis-
tence of these unsolvable problems means that the theory of computation is inevitably
about the limitations of computers as well as their capabilities.

Finally, although a Turing machine is clumsy in the way it carries out com-
putations, it is an effective yardstick for comparing the inherent complexity of one



Introduction

computational problem to that of another. Some problems that are solvable in princi-
ple are not really solvable in practice, because their solution would require impossible
amounts of time and space. A simple criterion involving Turing machines is generally
used to distinguish the tractable problems from the intractable ones. Although the
criterion is simple, however, it is not always easy to decide which problems satisfy
it. In the last chapter we discuss an interesting class of problems, those for which no
one has found either a good algorithm or a convincing proof that none exists.

People have been able to compute for many thousands of years, but only very
recently have people made machines that can, and computation as a pervasive part
of our lives is an even more recent phenomenon. The theory of computation is
slightly older than the electronic computer, because some of the pioneers in the
field, Turing and others, were perceptive enough to anticipate the potential power of
computers; their work provided the conceptual model on which the modern digital
computer is based. The theory of computation has also drawn from other areas:
mathematics, philosophy, linguistics, biology, and electrical engineering, to name a
few. Remarkably, these elements fit together into a coherent, even elegant, theory,
which has the additional advantage that it is useful and provides insight into many
areas of computer science.

xiii



CONTENTS

Preface ix

Introduction  xi

PARTI

Mathematical Notation

and Techniques 1

PARTII

Regular Languages
and Finite Automata 83

CHAPTERS

Regular Expressions
and Finite Automata 85

cHAPTERT
Basic Mathematical Objects 3 3.2 The Memory Required to Recognize a

1.1
1.2
1.3
14
1.5

Sets 3

Logic 9
Functions 17
Relations 22
Languages 28
Exercises 32

More Challenging Problems

CHAPTERZ
Mathematical Induction

and Recursive Definitions 43

2.1
2.2
2.3

24
2.5

Proofs 43

39

3.1 Regular Languages and Regular
Expressions 85

Language 90
3.3 Finite Automata 95
3.4 Distinguishing One String from Another
3.5 Unions, Intersections, and Complements
Exercises 112
More Challenging Problems 118

CHAPTERG

Nondeterminism
and Kleene’s Theorem 123

4.1 Nondeterministic Finite Automata 123

4.2 Nondeterministic Finite Automata
with A-Transitions 133

The Principle of Mathematical Induction 48 43 Kleene’s Theorem 145

The Strong Principle of Mathematical

Induction 55
Recursive Definitions 58
Structural Induction 66
Exercises 72

More Challenging Problems

77

Exercises 156
More Challenging Problems 164

CHAPTERD

Regular and Nonregular
Languages 168

5.1 A Criterion for Regularity 168
5.2 Minimal Finite Automata 175

105
109



vi Contents

5.3 The Pumping Lemma for Regular

Languages 180
5.4 Decision Problems 186
5.5 Regular Languages and Computers 189

Exercises 191
More Challenging Problems 196

PART

Context-Free Languages
and Pushdown Automata 201

CHAPTER®
Context-Free Grammars 203

6.1 Examples and Definitions 203

210

217

6.4 Derivation Trees and Ambiguity 220

6.5 An Unambiguous CFG for Algebraic
Expressions 226

6.6 Simplified Forms and Normal Forms
240
More Challenging Problems

6.2 More Examples
6.3 Regular Grammars

232
Exercises
247

CHAPTERT
Pushdown Automata 251

7.1 Introduction by Way of an Example 251
7.2 The Definition of a Pushdown Automaton 255
7.3 Deterministic Pushdown Automata 260

7.4 APDA Corresponding to a Given Context-Free
Grammar 265

7.5 A Context-Free Grammar Corresponding to a
Given PDA 273

7.6 Parsing 280
290
More Challenging Problems

Exercises
295

CHAPTERS

Context-Free and
Non-Context-Free Languages 297

8.1 The Pumping Lemma for Context-Free
Languages 297

8.2 Intersections and Complements
of Context-Free Languages 306

8.3 Decision Problems Involving Context-Free
Languages 311

312
More Challenging Problems

PARTIV

Turing Machines and Their
Languages 317

Exercises
314

CHAPTERD
Turing Machines 319

9.1 Definitions and Examples 319

9.2 Computing a Partial Function with a

Turing Machine 328
9.3 Combining Turing Machines 332

9.4 Variations of Turing Machines:
Multitape TMs 337

9.5 Nondeterministic Turing Machines
9.6 Universal Turing Machines 347

9.7 Models of Computation and the
Church-Turing Thesis 352

354
More Challenging Problems 361

341

Exercises

cHarTER1O

Recursively Enumerable
Languages 365

10.1 Recursively Enumerable and Recursive 365
10.2 Enumerating a Language 368

10.3 More General Grammars 371



10.4 Context-Sensitive Languages and the
Chomsky Hierarchy 380

Not All Languages are Recursively
Enumerable 387

Exercises 397
More Challenging Problems 401

10.5

PARTV

Unsolvable Problems and
Computable Functions 405

cHarTeEr1l
Unsolvable Problems 407

11.1 A Nonrecursive Language and an Unsolvable

Problem 407

Reducing One Problem to Another: The
Halting Problem 411

Other Unsolvable Problems Involving
TMs 416

Rice’s Theorem and More Unsolvable
Problems 419

Post’s Correspondence Problem 422

Unsolvable Problems Involving Context-Free
Languages 430

Exercises 436

11.2
11.3
114

11.5
11.6

More Challenging Problems 439

cHapTERT12
Computable Functions 442

12.1 442

12.2 Primitive Recursive Predicates and Some
Bounded Operations 451

Unbounded Minimalization and p-Recursive
Functions 459

Godel Numbering 461

All Computable Functions Are

u-Recursive 465

Primitive Recursive Functions

12.3

12.4
12.5

Contents vii

12.6 Nonnumeric Functions, and Other Approaches
to Computability 470

Exercises 474
More Challenging Problems 477

pant VI

Iintroduction to
Computational
Complexity 479

cHaPTERTS

Measuring and Classifying
Complexity 481

13.1
13.2

481

Time and Space Complexity of a Turing
Machine 486

Complexity Classes

Growth Rates of Functions

13.3 492

Exercises 497
More Challenging Problems 499

cHarTERT14

Tractable and Intractable
Problems 500

14.1 Tractable and Possibly Intractable Problems:
Pand NP 500

Polynomial-Time Reductions and
NP-Completeness 506

Cook’s Theorem 510

Some Other NP-Complete Problems
Exercises 522

More Challenging Problems 524

14.2

14.3

144 517

References 527
Bibliography 529
Index of Notation 531
Index 535



Mathematical Notation
and Techniques

his textbook starts by reviewing some of the most fundamental mathematical

ideas: sets, functions, relations, and basic principles of logic. Later in the book
we will study abstract “machines”; the components of an abstract machine are sets,
and the way the machine works is described by a function from one set to another. In
the last section of Chapter 1, we introduce languages, which are merely sets whose
elements are strings of symbols. The notation introduced in this section will be
useful later, as we study classes of languages and the corresponding types of abstract
machines.

Reasoning about mathematical objects involves the idea of a proof, and this is the
subject of Chapter 2. The emphasis is on one particular proof technique—the principle
of mathematical induction—which will be particularly useful to us in this book. A
closely related idea is that of an inductive, or recursive, definition. Definitions of this
type will make it easy to define languages and to establish properties of the languages
using mathematical induction. B






CHAPTEHR

Basic Mathematical Objects

1.1 | SETS

A set is determined by its elements. An easy way to describe or specify a finite set is
to list all its elements. For example,

A ={11,12,21,22}

When we enumerate a set this way, the order in which we write the elements is
irrelevant. The set A could just as well be written {11, 21,22, 12}. Writing an
element more than once does not change the set: The sets {11, 21,22, 11, 12, 21} and
{11, 21, 22, 12} are the same.

Even if a set is infinite, it may be possible to start listing the elements in a way
that makes it clear what they are. For example,

B =1{3,5,7,9,...}

describes the set of odd integers greater than or equal to 3. However, although this
way of describing a set is common, it is not always foolproof. Does {3, 5,7, ...}
represent the same set, or does it represent the set of odd primes, or perhaps the set
of integers bigger than 1 whose names contain the letter “e”?

A precise way of describing a set without listing the elements explicitly is to give
a property that characterizes the elements. For example, we might write

B = {x | x is an odd integer greater than 1}
or
A = {x | x is a two-digit integer, each of whose digits is 1 or 2}

The notation “{x|” at the beginning of both formulas is usually read “the set of all x
such that.”
To say that x is an element of the set A, we write

xeA



PART 1 Mathematical Notation and Techniques

Using this notation we might describe the set C = {3, 5,7, 9, 11} by writing
C={x|xeBandx <11}
A common way to shorten this slightly is to write
C={xeB|x<1ll)}

which we read “the set of x in B such that x < 11.”
It is also customary to extend the notation in a different way. It would be rea-
sonable to describe the set

D = {x | there exist integers { and j, both > 0, with x = 3i + 7}

as “the set of numbers 3i + 7, where i and j are both nonnegative integers,” and a
concise way to write this is

D = {3i +7j | i, j are nonnegative integers}

Once we define N to be the set of nonnegative integers, or natural numbers, we can
describe D even more concisely by writing

D={3i+7jli, jeN}

For two sets A and B, we say that A is a subset of B, and write A C B, if every
element of A is an element of B. Because a set is determined by its elements, two
sets are equal if they have exactly the same elements, and this is the same as saying
that each is a subset of the other. When we want to prove that A = B, we will need
to show both statements: that A C B and that B C A.

The complement of a set A is the set A" of everything that is not an element of
A. This makes sense only in the context of some “universal set” U containing all the
elements we are discussing.

A={xeU|x¢A)

Here the symbol ¢ means “is not an element of.” If U is the set of integers, for
example, then {1, 2}’ is the set of integers other than 1 or 2. The set {1, 2}’ would be
different if U were the set of all real numbers or some other universe.

Two other important operations involving sets are union and intersection. The
union of A and B (sometimes referred to as “A union B”) is the set

AUB={x|x€Aorx € B}
and the intersection of A and B is

ANB={x|xeAandx € B}
For example,

{1,2,3,4}U{2,4,6,8) = (1,2,3,4,6,8)
{1,2,3,4)N (2,4, 6,8) = (2, 4)



