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INTRODUCTION

WHAT IS CLOJURE?

Clojure is a dynamic, general-purpose programming language, combining the
approachability and interactive development of a scripting language with an
efficient and robust infrastructure for multithreaded programming. Clojure is a
compiled language, yet remains completely dynamic—every feature supported
by Clojure is supported at runtime. Clojure provides easy access to the Java
frameworks, with optional type hints and type inference, to ensure that calls to
Java can avoid reflection.

Clojure is a dialect of Lisp, and shares with Lisp the code-as-data philosophy and
a powerful macro system. Clojure is predominantly a functional programming
language, and features a rich set of immutable, persistent data structures. When
mutable state is needed, Clojure offers a software transactional memory system
and reactive Agent system that ensure clean, correct, multithreaded designs.

—Ri1cH HICKEY, AUTHOR OF CLOJURE

This quote from Rich Hickey, the creator of Clojure, captures what Clojure is. Many people equate
Clojure with functional programming, but much like Lisp, its predecessor, it’s a general-purpose
language that will support you no matter what paradigm you decide to program in.

Clojure is, however, very opinionated and offers great support for programming in a functional
manner, with its focus on immutable values and persistent data structures. You may be surprised
to know that Clojure also offers the ability to do object-oriented programming, which we cover in

this book.

WHO IS THIS BOOK FOR?

This book was written with the professional programmer in mind. This means you should have
experience programming in a language, and you should know the basic syntax and concepts in
Clojure, and be ready to take Clojure programming to the next level. Our goal is to take you from
a Clojure beginner to being able to think like a Clojure developer. Learning Clojure is much more
than just learning a new syntax. You must use tools and constructs much differentely than anything
you may be familiar with.
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DEMO APPLICATION SOURCE CODE

You can access the source code from the Wiley website at www.wiley.com/go/
professionalclojure or at our demo application via Github at https://github
.com/backstopmedia/clojurebook.

A powerful programming language is more than just a means for instructing
a computer to perform tasks. The language also serves as a framework within
which we organize our ideas about processes.

—STRUCTURE AND INTERPRETATION OF COMPUTER PROGRAMS
This book assumes some prior knowledge of Clojure and programming in general, but does not
assume proficiency in Clojure. It will cover a broad scope of topics from changing the way you think

and approach programming to how you integrate the REPL into your normal development routine
to how you build real world applications using Ring and ClojureScript.

WHAT WILL YOU LEARN?

Our goal is to provide you with some real world examples of how to apply your Clojure knowledge
to your day-to-day programming, not just theory and academia.

Chapter 1

In Chapter 1, you will learn about Clojure’s unique view on designing programs. You’ll discover
some of the things that set Clojure apart from other languages, for example, how immutability is the
default, and how Clojure qualifies as object-oriented programming.

Chapter 2

In Chapter 2, you will learn how to become proficient with the REPL and various tips and tech-
niques for interacting with your actual application through the REPL. You’'ll learn how to run your
code and tests from the REPL as well as how to write code that is easily reloaded from the REPL
without having to restart it.

Chapter 3

In Chapter 3, you learn about building web services with Compojure, and the various concepts
involved such as routes, handlers, and middleware. You will build a complete web service, and then
learn various techniques for deploying your new application.

XVi
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Chapter 4

Chapter 4 covers testing in Clojure, focusing primarily on the clojure. test testing library. You’ll
learn various techniques for many common testing scenarios, along with tools to help measure the
quality of your code.

Chapter 5

In Chapter 5, you will learn how to build a task management web application similar to the popular
Trello application in ClojureScript. You’ll also learn the techniques for sharing functions between
both your server-side and client-side applications.

Chapter 6

Chapter 6 takes a look at Datomic and how it applies the concept of immutability to databases.
You’ll learn the basics of how to model data in a Datomic database and how to extract that infor-
mation. Then you’ll apply this knowledge to building a database to support the task management
application from Chapter 5.

Chapter 7

In Chapter 7, you’ll take a look at performance and how to make your Clojure code execute faster.
You’ll discover how with a little work you can tweak your Clojure code to be as fast as Java code.

TOOLS YOU WILL NEED

Just as in any good adventure or journey, having the right tools makes things go much smoother.
Fortunately, to work through the examples in this book, you only need three things: Java,
Leiningen, and a good text editor.

Java

Most computers these days come with Java pre-installed, but in order to run the examples contained
in this book you need to make sure you have installed a recent version. The code examples in this
book were written with and confirmed to work with JDK 1.8.0_235. For instructions on how to
download and install the proper JDK for your platform, see the documentation at Oracle’s JDK
download page: (http://www.oracle.com/technetwork/java/javase/downloads/index.html).

Leiningen

Leiningen, according to their website (http://leiningen.org), is the most contributed-to Clojure
project. For those of you coming from a background in Java, Leiningen fills a similar role that

Xvii
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Maven does for the Java world, only without all of the XML, and you can avoid wanting to pull
your hair out. It helps you manage the dependencies for your project and declaratively describe your
project and configuration, and provides access to a wealth of plugins for everything from code
analysis to automation, and more. Leiningen makes your Clojure experience much more enjoyable.

Fortunately, getting Leiningen up and running is a fairly simple task. You’ll want to install the latest
version available, which at the time of this writing is 2.5.3. Please refer to the Leiningen website for
instructions particular to your programming environment.

Editors

Once you have Leiningen installed, the only thing left to do is to make sure you have a good text
editor to efficiently edit your Clojure code. If you have a favorite editor, just use what you’re already
comfortable with. However, if your editor doesn’t support basic things like parentheses balancing,
integration with the REPL, syntax highlighting, or properly indenting Clojure code, you may want
to consider one of the editors below.

Emacs

Emacs is the favored editor of many grizzled veterans. It has a long history with Lisp. Even though
it has a steep learning curve, it is considered by many to be very powerful, and no other editor is as
extensible. There are many custom Emacs configurations designed to help ease the learning curve,
such as Emacs Prelude (https://github.com/bbatsov/prelude), which also contains a sensible
default configuration for developing in many languages, including Clojure.

LightTable

LightTable (http://lighttable.com) began life as a Kickstarter project with a unique new
vision of how to integrate the code editor, REPL, and documentation browser for Clojure. It has
delivered on those promises and then some and has gained popularity among many in the Clojure
community.

Cursive (IntelliJ)

If you’re already comfortable with using any of the various JetBrains IDEs, you’ll be happy to know
that there is a plugin for IntelliJ called Cursive (https://cursive-ide.com). Besides having good
integration with nREPL, it also stays true to its reputation and contains excellent refactoring sup-
port, as well as debugging and Java interop.

Counterclockwise (Eclipse)

For those who are familiar with Eclipse, there is Counterclockwise (http://doc.ccw-ide.org),
which can be installed as either an Eclipse plugin or a standalone product. Counterclockwise boasts
many of the same features as the previous editors, integration with the REPL, and ability to evaluate
code inline.
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CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

NOTE Notes indicates notes, tips, bints, tricks, and/or asides to the current
discussion.

As for styles in the text:

>

>

>

We highlight new terms and important words when we introduce them.
We show code within the text like so: persistence.properties.

We show all code snippets in the book using this style:

FileSystem fs = FileSystem.get (URI.create(uri), conf);
InputStream in = null;

try {

URLs in text appear like this: http://<Slave Hostnames:50075.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code man-
ually, or to use the source code files that accompany the book. All of the source code used in this
book is available for download at www.wiley.com. Specifically for this book, the code download is
on the Download Code tab at:

www.wiley.com/go/professionalclojure

You can also search for the book at www.wrox.com by ISBN (the ISBN for this book is 9781119267171
to find the code. And a complete list of code downloads for all current Wrox books is available at
www.wiley.com/dynamic/books/download.aspx.

NOTE Because many books have similar titles, you may find it easiest to search
by ISBN' this book’s ISBN is 978-1-1 19-26727-0

_— _—

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

Xix
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ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

To find the errata page for this book, go to www.wiley.com/go/ and click the Errata link. On
this page you can view all errata that has been submitted for this book and posted by Wrox
editors.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact /techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the informa-
tion and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent
editions of the book.

P2P.WROX.COM

XX

For author and peer discussion, join the P2P forums at http: //p2p.wrox.com. The forums are a
web-based system for you to post messages relating to Wrox books and related technologies and
interact with other readers and technology users. The forums offer a subscription feature to e-mail
you topics of interest of your choosing when new posts are made to the forums. Wrox authors, edi-
tors, other industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will find a number of different forums that will help you, not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

1. Gotohttp://p2p.wrox.com and click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

NOTE You can read messages in the forums without joining P2P, but in order to
post your own messages, you must join.




