Wrox

A Wiley Brand_

Professional

Clojure

Jeremy Anderson, Michael Gaare, Justin Holguin, Nick Bailey, Timothy Pratley

™

to Programmer™y

PROFESSIONAL

Clojure

Jeremy Anderson
Michael Gaare
Justin Holguin

Nick Bailey

Timothy Pratley

WIrox

A Wiley Brand

Professional Clojure

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2016 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-119-26727-0
ISBN: 978-1-119-26728-7 (ebk)
ISBN: 978-1-119-26729-4 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http: //www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is
sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional ser-
vices. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the

United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) §72-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with stan-
dard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such
as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport .wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2016934964

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

PROFESSIONAL CLOJURE

INTRODUCTION o vcvsossscssssnsnsnsasssasonssnsnsessnnnasssnessesos XV
CHAPTER1 HaveaBeginner'sMind 1
CHAPTER 2 Rapid Feedback Cycles with Clojure......................... 31
CHAPTER3 WebServicesoiiiiiiiiiniiiiniiiiniinnnnenns 53
CHAPTERA TEStING covssvvsssmmmessmis sampeonants s mnmsanssse e 99
CHAPTER5 Reactive Web Pages in ClojureScript 129
CHAPTER 6 The DatomicDatabasecoiiiiiiiinnnn... 169
CHAPTER7 Performance.uuinininin i 217

Mo EE, 752 5E #EPDFIE V5) © www. ertongbook. com

ABOUT THE AUTHORS

JEREMY ANDERSON is a developer at Code Adept, a West Michigan-based software
consultancy focused on delivering high-quality software through providing software
development, agile coaching, and training services. He is a Clojure enthusiast and
contributor to a few different Clojure libraries. He is very passionate about teaching
others how to program and volunteers to help teach computer science to area
high-school and middle-school students.

MICHAEL GAARE is the platform technical lead at Nextangles, a financial technology
startup. He’s been using Clojure professionally since 2012 to build web services,
data processing systems, and various libraries—not frameworks! In his spare time,
he enjoys spending time with his wife and two daughters, and his hobby is opera
singing.

JUSTIN HOLGUIN is a software engineer at Puppet Labs, where he specializes in
Clojure back-end services. Justin has a passion for functional programming and a spe-
cial interest in technologies that improve software reliability, such as advanced type
systems and property-based testing.

NICK BAILEY is a Clojure enthusiast and the maintainer of the Clojure java.jmx
library. He is a software architect at DataStax, where he uses Clojure to build
enterprise-level software for managing distributed databases. He was introduced to
Clojure in 2010 and has been a fan ever since.

TIMOTHY PRATLEY is a Clojure contributor and advocate. Clojure has been his language
of choice since 2008. He develops solutions in Clojure, ClojureScript, and Clojure-
Android at his current role at Outpace Systems, Inc. He has 15 years of professional
software development experience during which he has used many languages, frame-
works, and databases. He loves Clojure, Datomic, pair programming, and thinking.

ABOUT THE TECHNICAL EDITORS

JUSTIN SMITH is a full-time Clojure developer who is active in the online Clojure community. His
day job is 100% Clojure development.

ZUBAIR QURAISHI is a UX/Design and marketing hacker based in Denmark who has sold 2 startups
and invested in over 30 startups over the last 20 years. He has been using Clojure and ClojureScript
for the last § years. He has worked in many startups and Fortune 500 companies based in the
United States, Europe, and Asia. You can find his blog is at www. zubairquraishi.com.

ALEX OTT is a software architect in Intel Security (formerly McAfee), based in Paderborn, Germany.
He works in the area of information security and has been using Clojure since release 1.0 (2009) to
build prototypes, internal services, and open source projects, like Incanter.

DOUG KNIGHT has been programming computers professionally for 18 years, using Microsoft tech-
nologies for most of that time. He switched to Ruby on Rails in 2014 when he joined LivingSocial,
and in 2015 he added Clojure as part of his work for the company.

CREDITS

PROJECT EDITOR PROFESSIONAL TECHNOLOGY & STRATEGY

Charlotte Kughen DIRECTOR
Barry Pruett

TECHNICAL EDITOR

Justin Smith BUSINESS MANAGER

Zubair Quraishi Amy Knies

Alex Ott

Doug Knight EXECUTIVE EDITOR
Jim Minatel

PRODUCTION EDITOR
Barath Kumar Rajasekaran PROJECT COORDINATOR, COVER
Brent Savage

COPY EDITOR

Troy Mott PROOFREADER
Nancy Bell

MANAGER OF CONTENT DEVELOPMENT

AND ASSEMBLY INDEXER

Mary Beth Wakefield Nancy Guenther

PRODUCTION MANAGER COVER DESIGNER

Kathleen Wisor Wiley

MARKETING MANAGER COVER IMAGE

Carrie Sherrill ©d8nn/Shutterstock

ACKNOWLEDGMENTS

JEREMY WOULD LIKE TO THANK God, first and foremost, for granting him the gifts that he has in
order to do the things that he loves. Secondly, Jeremy thanks his family for being so supportive and
understanding of him locking himself in his office to frantically write on evenings and weekends.
Next, thanks to Christina Rudloff and Troy Mott for all the hard work they’ve done to put this
project together and for inviting him onto this writing team, and thanks also to all the authors who
helped make this project a reality. Finally, thanks to all the technical reviewers for taking the time to
read and provide valuable feedback in the early stages of this book.

NICK WOULD LIKE TO THANK EVERYONE involved in making this book a reality: Troy and Christina
for organizing, his fellow authors for writing and reviewing, and the technical reviewers for

great feedback. He would also like to thank DataStax for giving him a chance to write Clojure
professionally.

MICHAEL WOULD LIKE TO THANK LARA, Charlotte, and Juliette for their love, support, and under-
standing; Keith for his valuable assistance; Christina and Troy for their patience and the oppor-
tunity to write about a terrific subject; and Rich for creating something so interesting to write
about—not to mention work with.

JUSTIN WOULD LIKE TO THANK HIS FAMILY for bootstrapping him and, among countless other things,
encouraging his love of books and computers. He would also like to thank his many brilliant friends
and colleagues at Puppet Labs, where he has been inspired and challenged to master Clojure bit by
bit, day by day.

TIMOTHY WOULD LIKE TO THANK SHIN Nee for being the ultimate collaborator. He would like to
thank you, the reader, for exploring how programming can be better; the Clojure community

for providing a friendly, helpful, and pleasant ecosystem to exist in; and his parents for the many
opportunities they crafted into his life.

Mo EE, 752 5E #EPDFIE V5) © www. ertongbook. com

INTRODUCTION

WHAT IS CLOJURE?

Clojure is a dynamic, general-purpose programming language, combining the
approachability and interactive development of a scripting language with an
efficient and robust infrastructure for multithreaded programming. Clojure is a
compiled language, yet remains completely dynamic—every feature supported
by Clojure is supported at runtime. Clojure provides easy access to the Java
frameworks, with optional type hints and type inference, to ensure that calls to
Java can avoid reflection.

Clojure is a dialect of Lisp, and shares with Lisp the code-as-data philosophy and
a powerful macro system. Clojure is predominantly a functional programming
language, and features a rich set of immutable, persistent data structures. When
mutable state is needed, Clojure offers a software transactional memory system
and reactive Agent system that ensure clean, correct, multithreaded designs.

—Ri1cH HICKEY, AUTHOR OF CLOJURE

This quote from Rich Hickey, the creator of Clojure, captures what Clojure is. Many people equate
Clojure with functional programming, but much like Lisp, its predecessor, it’s a general-purpose
language that will support you no matter what paradigm you decide to program in.

Clojure is, however, very opinionated and offers great support for programming in a functional
manner, with its focus on immutable values and persistent data structures. You may be surprised
to know that Clojure also offers the ability to do object-oriented programming, which we cover in

this book.

WHO IS THIS BOOK FOR?

This book was written with the professional programmer in mind. This means you should have
experience programming in a language, and you should know the basic syntax and concepts in
Clojure, and be ready to take Clojure programming to the next level. Our goal is to take you from
a Clojure beginner to being able to think like a Clojure developer. Learning Clojure is much more
than just learning a new syntax. You must use tools and constructs much differentely than anything
you may be familiar with.

INTRODUCTION

DEMO APPLICATION SOURCE CODE

You can access the source code from the Wiley website at www.wiley.com/go/
professionalclojure or at our demo application via Github at https://github
.com/backstopmedia/clojurebook.

A powerful programming language is more than just a means for instructing
a computer to perform tasks. The language also serves as a framework within
which we organize our ideas about processes.

—STRUCTURE AND INTERPRETATION OF COMPUTER PROGRAMS
This book assumes some prior knowledge of Clojure and programming in general, but does not
assume proficiency in Clojure. It will cover a broad scope of topics from changing the way you think

and approach programming to how you integrate the REPL into your normal development routine
to how you build real world applications using Ring and ClojureScript.

WHAT WILL YOU LEARN?

Our goal is to provide you with some real world examples of how to apply your Clojure knowledge
to your day-to-day programming, not just theory and academia.

Chapter 1

In Chapter 1, you will learn about Clojure’s unique view on designing programs. You’ll discover
some of the things that set Clojure apart from other languages, for example, how immutability is the
default, and how Clojure qualifies as object-oriented programming.

Chapter 2

In Chapter 2, you will learn how to become proficient with the REPL and various tips and tech-
niques for interacting with your actual application through the REPL. You’'ll learn how to run your
code and tests from the REPL as well as how to write code that is easily reloaded from the REPL
without having to restart it.

Chapter 3

In Chapter 3, you learn about building web services with Compojure, and the various concepts
involved such as routes, handlers, and middleware. You will build a complete web service, and then
learn various techniques for deploying your new application.

XVi

INTRODUCTION

Chapter 4

Chapter 4 covers testing in Clojure, focusing primarily on the clojure. test testing library. You’ll
learn various techniques for many common testing scenarios, along with tools to help measure the
quality of your code.

Chapter 5

In Chapter 5, you will learn how to build a task management web application similar to the popular
Trello application in ClojureScript. You’ll also learn the techniques for sharing functions between
both your server-side and client-side applications.

Chapter 6

Chapter 6 takes a look at Datomic and how it applies the concept of immutability to databases.
You’ll learn the basics of how to model data in a Datomic database and how to extract that infor-
mation. Then you’ll apply this knowledge to building a database to support the task management
application from Chapter 5.

Chapter 7

In Chapter 7, you’ll take a look at performance and how to make your Clojure code execute faster.
You’ll discover how with a little work you can tweak your Clojure code to be as fast as Java code.

TOOLS YOU WILL NEED

Just as in any good adventure or journey, having the right tools makes things go much smoother.
Fortunately, to work through the examples in this book, you only need three things: Java,
Leiningen, and a good text editor.

Java

Most computers these days come with Java pre-installed, but in order to run the examples contained
in this book you need to make sure you have installed a recent version. The code examples in this
book were written with and confirmed to work with JDK 1.8.0_235. For instructions on how to
download and install the proper JDK for your platform, see the documentation at Oracle’s JDK
download page: (http://www.oracle.com/technetwork/java/javase/downloads/index.html).

Leiningen

Leiningen, according to their website (http://leiningen.org), is the most contributed-to Clojure
project. For those of you coming from a background in Java, Leiningen fills a similar role that

Xvii

INTRODUCTION

Maven does for the Java world, only without all of the XML, and you can avoid wanting to pull
your hair out. It helps you manage the dependencies for your project and declaratively describe your
project and configuration, and provides access to a wealth of plugins for everything from code
analysis to automation, and more. Leiningen makes your Clojure experience much more enjoyable.

Fortunately, getting Leiningen up and running is a fairly simple task. You’ll want to install the latest
version available, which at the time of this writing is 2.5.3. Please refer to the Leiningen website for
instructions particular to your programming environment.

Editors

Once you have Leiningen installed, the only thing left to do is to make sure you have a good text
editor to efficiently edit your Clojure code. If you have a favorite editor, just use what you’re already
comfortable with. However, if your editor doesn’t support basic things like parentheses balancing,
integration with the REPL, syntax highlighting, or properly indenting Clojure code, you may want
to consider one of the editors below.

Emacs

Emacs is the favored editor of many grizzled veterans. It has a long history with Lisp. Even though
it has a steep learning curve, it is considered by many to be very powerful, and no other editor is as
extensible. There are many custom Emacs configurations designed to help ease the learning curve,
such as Emacs Prelude (https://github.com/bbatsov/prelude), which also contains a sensible
default configuration for developing in many languages, including Clojure.

LightTable

LightTable (http://lighttable.com) began life as a Kickstarter project with a unique new
vision of how to integrate the code editor, REPL, and documentation browser for Clojure. It has
delivered on those promises and then some and has gained popularity among many in the Clojure
community.

Cursive (IntelliJ)

If you’re already comfortable with using any of the various JetBrains IDEs, you’ll be happy to know
that there is a plugin for IntelliJ called Cursive (https://cursive-ide.com). Besides having good
integration with nREPL, it also stays true to its reputation and contains excellent refactoring sup-
port, as well as debugging and Java interop.

Counterclockwise (Eclipse)

For those who are familiar with Eclipse, there is Counterclockwise (http://doc.ccw-ide.org),
which can be installed as either an Eclipse plugin or a standalone product. Counterclockwise boasts
many of the same features as the previous editors, integration with the REPL, and ability to evaluate
code inline.

xviii

INTRODUCTION

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

NOTE Notes indicates notes, tips, bints, tricks, and/or asides to the current
discussion.

As for styles in the text:

>

>

>

We highlight new terms and important words when we introduce them.
We show code within the text like so: persistence.properties.

We show all code snippets in the book using this style:

FileSystem fs = FileSystem.get (URI.create(uri), conf);
InputStream in = null;

try {

URLs in text appear like this: http://<Slave Hostnames:50075.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code man-
ually, or to use the source code files that accompany the book. All of the source code used in this
book is available for download at www.wiley.com. Specifically for this book, the code download is
on the Download Code tab at:

www.wiley.com/go/professionalclojure

You can also search for the book at www.wrox.com by ISBN (the ISBN for this book is 9781119267171
to find the code. And a complete list of code downloads for all current Wrox books is available at
www.wiley.com/dynamic/books/download.aspx.

NOTE Because many books have similar titles, you may find it easiest to search
by ISBN' this book’s ISBN is 978-1-1 19-26727-0

_— _—

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

Xix

INTRODUCTION

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

To find the errata page for this book, go to www.wiley.com/go/ and click the Errata link. On
this page you can view all errata that has been submitted for this book and posted by Wrox
editors.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact /techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the informa-
tion and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent
editions of the book.

P2P.WROX.COM

XX

For author and peer discussion, join the P2P forums at http: //p2p.wrox.com. The forums are a
web-based system for you to post messages relating to Wrox books and related technologies and
interact with other readers and technology users. The forums offer a subscription feature to e-mail
you topics of interest of your choosing when new posts are made to the forums. Wrox authors, edi-
tors, other industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will find a number of different forums that will help you, not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

1. Gotohttp://p2p.wrox.com and click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

NOTE You can read messages in the forums without joining P2P, but in order to
post your own messages, you must join.

