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PREFACE

This volume presents five review articles that cover a broad range of topics
which are likely to be of interest to many scientists concerned with optics and
related subjects.

The first article, by V. Chumash, I. Cojocaru, F. Fazio, F. Michelotti and
M. Bertolotti, deals with nonlinear optical properties of chalcogenide glasses.
These materials have many interesting structural propertics some of which are
useful for applications to integrated active optical devices. This article presents
a review of experimental measurecments of nonlinear absorption cocfficients
and nonlinear refractive indices of such materials. A review of various models
formulated to explain their properties is also included.

The second article, by P. Hartharan and B.C. Sanders, presents a review of
quantum effects in optical interferometry. After a brief introduction concerning
sources of nonclassical light, second- and fourth-order interference, the geomet-
ric phase, two-photon interferometry, complementarity and quantum limits are
discussed. Experiments are also reviewed involving the generation of pairs of
photons in entangled states, which are used to investigate some puzzling features
of quantum mechanics, including tests of Bell’s inequalities, quantum erasers and
single-photon tunneling.

The article which follows, by M. Bertero and C. De Mol, reviews researches on
super-resolution, i.c. the possibility of overcoming the classical diffraction limit
of about half a wavelength. The problem is shown to be essentially equivalent to
extrapolating the spatial frequency spectrum of the object beyond the spectral
band of the optical system. It is demonstrated that in the presence of noise
significant super-resolution can be achieved when the linear dimensions of the
object are comparable with the resolution limit of the system. Some practical
applications arc also considered, particularly in the field of confocal scanning
microscopy and in connection with inverse diffraction from far-field and near-
ficld data.

The next article, by Yu.A. Kravtsov and L.A. Apresyan, is concerned with the
theory of radiative energy transfer. The traditional theory is phenomenological,
based largely on the intuitive concept of geometrical rays. More recently many
attempts have been made to provide the theory with a sounder foundation. This
article reviews such researches, which use the more modern techniques of wave

v
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theory, coherence theory and statistical physics. The article includes examples
which demonstrate that the equation of radiative transfer may sometimes take
diffraction into account, and discusses a number of effects which have been
discovered relatively recently and which have a bearing on this subject, such
as enhanced backscattering and the phenomenon of weak localization. Some
nonlinear transport problems are also discussed.

The concluding article by I. Bialynicki-Birula deals with the somewhat
clusive but potentially useful concept of the photon wave function. A review is
presented of the century-old history of this subject. It is shown that the photon
wave function bridges the gap between classical electromagnetic theory and
quantum electrodynamics and it has a number of uses.

It is a pleasure to note that all the articles in this volume have been contributed
by leading experts in the various fields.

Emil Wolf
Department of Physics and Astronomy
University of Rochester

Rochester, New York 14627, USA

October 1996
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§ 1. Introduction

Nonlinear optical effects in semiconductors are studied less frequently in the
amorphous than in the crystalline state. The chalcogenide glass semiconduc-
tor (ChG) is a material that is highly resistive to crystallization. Irradiation of
light could cause a change in its optical properties that is not related to the
crystalline—amorphous type of transformation.

It is well known that the optical properties of ChG near the equilibrium
state are primarily determined by the spectrum of the localized states in
the band gap, and by their carrier concentration. Most investigations do not
address the question as to how the process of carrier excitation by light takes
place, however, and how these carriers relax later, especially from extended
into localized states. An understanding of the relaxation processes is a basic
problem in amorphous-state physics, since they represent the first step for the
localization process, the basic property of ChG. Furthermore, the knowledge
of the kinetics peculiarities of the electron-hole pair relaxation and localization
permits the testing of different theoretical models and hypotheses (e.g., multiple
carrier trapping or the assumption of high carrier mobility in extended states).
Progress in clarifying these processes greatly depends on the possibility of
a quantitative investigation of the spectrum of the elementary excitations in
a wide energy region, with time resolution of the order of the characteristic
time of the investigated clementary processes. These requests widen when the
elementary excitations in a light field (external driving force) are investigated,
including the nonlinear and nonstationary medium behavior in states far from
the thermodynamic equilibrium.

Amorphous semiconductors, including ChG, are attractive candidates for the
fabrication of all-optical passive and active devices. In recent years a variety of
both passive (fibers, planar waveguides, lenses, gratings) and active (nonlinear
devices mainly based on Fabry—Perot interference, optical bistability and optical
hysteresis) elements have been demonstrated (Andriesh, Bykovskii, Kolomeiko,
Makovkin, Smirnov and Shmal’ko [1977], Andriesh, Bykovskii, Smirnov, Cernii
and Shmal’ko [1978], Suhara, Handa, Nishihara and Koyama [1982], Hajto and
Janossy [1983], Andriesh, Enaki, Cojocaru, Ostafeichuk, Cerbari and Chumash
[1988], Haro-Poniatowski, Fernandez Guasti, Mendez and Balkanski [1989]),
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Nasu, Kubodera, Kobayashi, Nakamura and Kamiya [1990], Heo, Sanghera
and Mackenzie [1991], Bertolotti, Chumash, Fazio, Ferrari and Sibilia [1991],
Andriesh, Chumash, Cojocaru and Enaki [1991], Asobe, Suzuki, Kanamori
and Kubodera [1992], Bertolotti, Chumash, Fazio, Ferrari and Sibilia [1993],
Chumash, Cojocaru, Bostan, Cerbari and Andriesh [1994].

The aim of this work is to illustrate the present state of knowledge and some
unresolved problems of the nonlinear interaction of a strong laser radiation with
ChG. The primary focus is nonlinear phenomena that are characteristic of the
amorphous semiconductors and that, as a rule, have no analog in crystalline
phase. Permanent photoinduced effects that result from laser excitation are not
considered here (i.e., effects that remain in ChG after irradiation) because of
previous work (see, e.g., Kastner [1985], Elliot [1986], Tanaka [1990] and the
references therein).

§ 2 examines the peculiarities of the nonlinear transmission of CW laser radi-
ation through thin ChG films. § 3 addresses nonlinear absorption of laser pulses
into ChG films, and §4 discusses optical hysteresis and nonlinear interaction
of short laser pulses with the ChG. A physical model, taking into account the
light interaction with nonequilibrium phonons, is considered in §5 in order
to explain the experimental results. The results of the numerical calculations
of the phenomenological equations are compared with the experimental data.
§ 6 examines results of the Z-Scan spectroscopy investigation of ChG thin
films under interband and intraband CW and picosecond irradiation. Nonlinear
refraction, nonlinear absorption, and permanent photostructural changes on ChG
thin films, suitable for planar waveguiding structures, are reviewed and possible
applications of ChG refractive index changes are discussed.

§ 2. Nonlinear Transmission of
CW Laser Radiation through Thin ChG Films

Several researchers studied some of the light-induced reversible changes of
the ChG optical constants to examine the nonlinear transmission of focused
CW laser radiation through thin film samples.

Toth, Hajto and Zentai [1977] observed a nonlinear change of the light
transmission, when GeSe, and AsSe films were irradiated with a focused Ar-laser
beam. With the purpose of excluding the contribution of irreversible changes
of the optical parameters, due to photostructural changes, the samples were
“stabilized” in the laser beam in advance or were annealed. The properties of
the reversible nonlinear change of the ChG sample transparency depend on the
laser input intensity.
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The light transmission of ChG samples decreases (laser radiation with
intensity from 2.5 W/cm? up to 15 W/em?) with the irradiation time () according
to a relation close to ¢!, whereas the value of the relative transmission change
is almost proportional to the intensity of the exciting light. For example,
when the Ar-laser exciting intensity (with wavelengths Aj.x =4880 A and
Arex = 5145 f\) increased from 0 to 15 W/cm?, the light transmission of an AsSe
film (with £, =1.86¢V and thickness d =1.85um) decreased 5 times, whereas
the transmission of a GeSe; film (E,=2.1¢V, d =6.4 um) decreased 2.4 times.
After switching off the exciting light the ChG film transmission recovers its
starting value exponentially. The transmission changes of the ChG films occur
with characteristic times of several seconds and no fast components are revealed
(Toth, Hajto and Zentai [1977]). It is worth noting that, as a result of the ChG
photostructural changes, the studied films are bleached (GeSe;) or darkened
(AsSe); in contrast, in an intensive CW laser radiation their transmission always
decreases.

Some studies (Hajto, Zentai and Kosa Somogyi [1977], Hajto and Janossy
[1983]) reported that with a CW-focused He—Ne laser (1 =632.8 nm, with a fixed
radiation intensity), the photocurrent, transmission, and reflection coefficients
of GeSe, films (deposited on glass substrates or self-supported in the air)
show periodic oscillations in time. The material returns to its initial transparent
state if the laser is switched off. The interaction of the laser radiation
with the air self-supported GeSe, thin films takes place at a considerably
smaller light intensity (~40-50 W/cm?), compared with the films on glass
substrates (~2kW/cm?). The frequency (3-50Hz) and amplitude of the light
transmission oscillations noticeably depend on the incident radiation intensity: an
increase in the laser radiation intensity is followed by an increase in the amplitude
of the transmission oscillations and by a decrease of their frequency (fig. 1). It
should be noted that the transmission oscillations are observed in strictly limited
ranges of the laser intensities (from 1.39kW/cm? up to 2.65kW/cm? for the
GeSe, film on the glass substrate). Near the laser threshold intensity the detected
oscillations are distinguished by a high stability, and after about 10* cycles of
oscillations no change in the ChG structure or any sign of matter transport are
detected. A logarithmic time dependence of the amplitude and frequency of
the oscillations was reported by Hajto, Janossy and Choi [1985]. It was not
possible to find an oscillation regime of the light transmission in crystalline
GeSe,, indicating that the clue to understand the physical mechanism lying at
its base is related to the amorphous nature of the ChG.

Another kind of nonlinear interaction of laser radiation with the ChG, which
has been revealed as an optical bistable light transmission, was found for the



