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Preface

This Fast Software Encryption workshop was the ninth in a series of workshops
started in Cambridge in December 1993. The previous workshop took place in
Yokohama in April 2001. It concentrated on all aspects of fast primitives for
symmetric cryptography: secret key ciphers, the design and cryptanalysis of
block and stream ciphers, as well as hash functions and message authentication
codes (MACs).

The ninth Fast Software Encryption workshop was held in February 2002 in
Leuven, Belgium and was organized by General Chair Matt Landrock (Crypto-
mathic Belgium), in cooperation with the research group COSIC of K.U. Leuven.
This year there were 70 submissions, of which 21 were selected for presentation
and publication in this volume.

We would like to thank the following people. First of all the submitting
authors and the program committee for their work. Then Markku-Juhani O.
Saarinen, Orr Dunkelman, Fredrik Jonsson, Helger Lipmaa, Greg Rose, Alex
Biryukov, and Christophe De Canniere, who provided reviews at the request
of program committee members. Bart Preneel for letting us use COSIC’s Web-
review software in the review process and Wim Moreau for all his support.
Finally we would like to thank Krista Geens of Cryptomathic for her help in the
registration and the practical organization.

May 2002 Joan Daemen and Vincent Rijmen
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New Results on Boomerang and Rectangle
Attacks*

Eli Biham!, Orr Dunkelman', and Nathan Keller?

! Computer Science Department, Technion.
Haifa 32000, Israel
{biham,orrd}@cs.technion.ac.il
2 Mathematics Department, Technion.
Haifa 32000, Israel
nkeller@tx.technion.ac.il

Abstract. The boomerang attack is a new and very powerful crypt-
analytic technique. However, due to the adaptive chosen plaintext and
ciphertext nature of the attack, boomerang key recovery attacks that re-
trieve key material on both sides of the boomerang distinguisher are hard
to mount. We also present a method for using a boomerang distinguisher,
which enables retrieving subkey bits on both sides of the boomerang dis-
tinguisher. The rectangle attack evolved from the boomerang attack.In
this paper we present a new algorithm which improves the results of the
rectangle attack.

Using these improvements we can attack 3.5-round SC2000 with 267
adaptive chosen plaintexts and ciphertexts, and 10-round Serpent with
time complexity of 2!7*® memory accesses (which are equivalent to 2!6°3
Serpent encryptions) with data complexity of 21263 chosen plaintexts.

1 Introduction

Differential cryptanalysis (3] is based on studying the propagation of differences
through an encryption function. Since its introduction many techniques based
on it were introduced. Some of these techniques, like the truncated differentials
(11] and the higher order differentials [2,11], are generalizations of the differ-
ential attack. Some other techniques like differential-linear attack [14] and the
boomerang attack [18] use the differential attack as a building block.

The boomerang attack is an adaptive chosen plaintext and ciphertext at-
tack. It is based on a pair of short differential characteristics used in a specially
built quartet. In the attack a pair of plaintexts with a given input difference are
encrypted. Their ciphertexts are used to compute two other ciphertexts accord-
ing to some other difference, these new ciphertexts are then decrypted, and the
difference after the decryption is compared to some (fixed known) value.

* The work described in this paper has been supported by the European Commission
through the IST Programme under Contract IST-1999-12324.

J. Daemen and V. Rijmen (Eds.): FSE 2002, LNCS 2365, pp. 1-16, 2002.
(© Springer-Verlag Berlin Heidelberg 2002



2 E. Biham, O. Dunkelman, and N. Keller

The boomerang attack was further developed in [10] into a chosen plaintext
attack called the amplified boomerang attack. Later, the amplified boomerang
attack was further developed into the rectangle attack [7].

In the transition from the boomerang attack to the rectangle attack the
probability of the distinguisher is reduced (in exchange for easing the require-
ments from adaptive chosen plaintext and ciphertext attack to a chosen plain-
text attack). The reduction in the distinguisher’s probability results in higher
data complexity requirements. For example, the data requirements for distin-
guishing a 2.5-round SC2000 [17] from a random permutation using a rectangle
distinguisher is 284:¢ chosen plaintext blocks, whereas only 23%2 adaptive chosen
plaintext and ciphertext blocks are required for the boomerang distinguisher.

In this paper we present a method to retrieve more subkey bits in key recov-
ery boomerang attacks. We also present a better algorithm to perform rectangle
attacks. These improvements result in better key recovery attacks which re-
quire less data or time (or both) and are more effective. The improvement to
the generic rectangle attack reduces the time complexity of attacking 10-round
Serpent from 227 memory accesses! to 2173® memory accesses which are equiv-
alent to about 21663 10-round Serpent encryptions. We also prove that these
key recovery attacks succeed (with very high probability) assuming that the
distinguishers are successful.

The paper is organized as follows: In Section 2 we briefly describe the
boomerang and the rectangle attacks. In Section 3 we present our new opti-
mized generic rectangle attack and analyze its application to generic ciphers and
to SC2000 and Serpent. In Section 4 we present our optimized generic boomerang
attack and analyze its application to both a generic cipher and real blockciphers
like SC2000 and Serpent. Section 5 describes a new technique to transform a
boomerang distinguisher into a key recovery attack that retrieves more subkey
material. We summarize this paper and our new results in Section 6.

2 Introduction to Boomerang and Rectangle Attacks

2.1 The Boomerang Attack

The boomerang attack was introduced in [18]. The main idea behind the
boomerang attack is to use two short differentials with high probabilities in-
stead of one differential of more rounds with low probability. The motivation for
such an attack is quite apparent, as it is easier to find short differentials with a
high probability than finding a long one with a high enough probability.

We assume that a block cipher E : {0,1}" x {0,1}* — {0,1}" can be de-
scribed as a cascade E = FE; o Ey, such that for Fy there exists a differential
a — [ with probability p, and for F; there exists a differential v — ¢ with
probability ¢. The boomerang attack uses the first characteristic (o« — ) for Ey
with respect to the pairs (Py, P») and (Ps, P4), and uses the second characteristic

! In [7] it was claimed to be 2%°° due to an error that occurred in the analysis.
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(y = 0) for E; with respect to the pairs (Cy,C3) and (Cy, Cy). The attack is
based on the following boomerang process:

— Ask for the encryption of a pair of plaintexts (Py, P,) such that P, & P, = «
and denote the corresponding ciphertexts by (Cy, Cs).

— Calculate C3 = C; @ § and Cy = Cy & §, and ask for the decryption of the
pair (C3,Cy). Denote the corresponding plaintexts by (P, Py).

— Check whether P; & Py = .

We call these steps (encryption, XOR by § and then decryption) a §—shift.

For a random permutation the probability that the last condition is satisfied
is 27". For E, however, the probability that the pair (P;, P») is a right pair with
respect to the first differential (&« — () is p. The probability that both pairs
(C1,C3) and (Cy, Cy) are right pairs with respect to the second differential is ¢2.
If all these are right pairs, then they satisfy E; '(C3) GBEI_I(C'4) =p=FEy(P3)®
Ey(Py), and thus, with probability p also P;&® Py = a. Therefore, the probability
of this quartet of plaintexts and ciphertexts to satisfy the boomerang conditions
is (pg)?. Therefore, pg > 27™/2 must hold for the boomerang distinguisher (and
the boomerang key recovery attacks) to work.

The attack can be mounted for all possible 8’s and 7’s simultaneously (as
long as 3 # =), thus, a right quartet for E is built with probability (p§)?, where:

p= ZPr'ﬂa—)ﬂ] and §=
B

a—f3

We refer the reader to [18,7] for the complete description and the analysis.

2.2 The Rectangle Attack

Converting adaptive chosen plaintext and ciphertext distinguishers into key re-
covery attacks pose several difficulties. Unlike the regular known plaintext, cho-
sen plaintext, or chosen ciphertext distinguishers, using the regular methods of
(3,15,11,4,5,14] to use adaptive chosen plaintext and ciphertext distinguishers
in key recovery attacks fail, as these techniques require the ability to directly
control either the input or the output of the encryption function.

In [10] the amplified boomerang attack is presented. This is a method for elim-
inating the need of adaptive chosen plaintexts and ciphertexts. The amplified
boomerang attack achieves this goal by encrypting many pairs with input differ-
ence «, and looking for a quartet (pair of pairs) for which, C;C3 = Co®Cy =6
when Py @ P, = P3 @ Py = . Given the same decomposition of E as before,
and the same basic differentials « — (3,7 — 4, the analysis shows that the
probability of a quartet to be a right quartet is 2~ (m+1/2pq.

The reason for the lower probability is that no one can guarantee that the
difference (in the middle of the encryption; needed for the quartet to be a right
boomerang quartet) is achieved. The lower probability makes the additional
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problem (already mentioned earlier) of finding and identifying the right quartets
even more difficult.

The rectangle attack [7] shows that it is possible to count over all the possible
B3’s and 7’s, and presents additional improvements over the amplified boomerang
attack. The improvements presented in the rectangle attack improve the proba-
bility of a quartet to be a right rectangle quartet to 2~"/2j4.

3 Improving the Rectangle Attack

The main problem dealt in previous works is the large number of possible quar-
tets. Unlike in the boomerang attack, in which the identification of possible
quartets is relatively simple, it is hard to find the right quartets in the rectangle
attacks since the attacker encrypts a large number of pairs (or structures) and
then has to find the right quartets through analysis of the ciphertexts. As the
number of possible quartets is quadratic in the number of pairs®, and as the
attacker has to test all the quartets, it is evident that the time complexity of the
attack is very large.

In this section we present an algorithm which solves the above problem by
exploiting the properties of a right quartet, and which tests only a small part
of the possible quartets. The new algorithm is presented on a generic cipher
with the following parameters: Let E be a cipher which can be described as a
cascade E = Efo Ej0EgoEy, and assume that Ey and E, satisfy the properties
of Ey and E; presented in Section 2 (i.e., there exist differentials o — 3 with
probability p of Ey and v — & with probability g of E). An outline of such an
E is presented in Figure 1. We can treat this F as composed of E' = F; o Ey
(for which we have a distinguisher) surrounded by the additional rounds of E,
and Ey. As mentioned in Section 2, for sufficiently high probabilities p, §, we can
distinguish F; o Ey from a random permutation using either a boomerang or a
rectangle distinguisher. However, we also like to mount key recovery attacks on
the full F.

Recall that the rectangle distinguisher parameters are a, d, p, and ¢. Given
these parameters, the rectangle distinguisher of the cipher E’ = FE; o Ey can
easily be constructed.

Before we continue we introduce some additional notations: Let X; be the
set of all plaintext differences that may cause a difference o after Ey. Let V}, be
the space spanned by the values in X;. Note that usually n — r}, bits are set to
0 for all the values in V;. Let r, = log, |V3| and tp = log, | Xs| (74 and ¢ are not
necessarily integers). Let my; be the number of subkey bits which enter E} and
affect the difference of the plaintexts by decrypting pairs whose difference after
E, is a, or formally

% This is a lower bound for the probability. For further analysis see [7].
3In the rectangle attack the quartet [(z,y),(z,w)] differs from the quartet

[(.’E, y)’ (w’ Z)]
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E

Plaintex Eh ! Eo El = Er H—s Ciphertext

Fig. 1. Outline of E

my =

w(K') =1 and 3K,z : gg,i(-’”)(%%,b(i@ a():; o }\

bK®KI bK$K’

;

where w(z) denotes the hamming weight of .

Similarly, let X is the set of all ciphertext differences that a difference §
before Ey may cause. Let V; denote the space spanned by the values of X; and
denote r; = log, |Vy|. Let t; = log, |X¢|. Let m; be the number of subkey bits
which enter E'y and affect the difference when encrypting a pair with difference
d or formally

/ Efp(z)® Ef(z® ) # }I
={K'|w(K')=1and 3K,z : J¥ /x )
" H )w( J=land3Kz: g~ (2)©Eyy, . (z00)

We outline all these notations in Figure 2.

m : subkey bits m :subkey bits

X, :possible X :possible
values lead to values cuased by
a difference. § difference.
V, :set of all Eb EO El Ef V;:set of all
differences in differences in
the active bits the active bits
in X, in X;

a difference between d difference between

(P,,P,) and (P, ,P,). (C,Cy and (C,,C,).

Fig. 2. The Notations Used in This Paper
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Our new algorithm for using rectangle distinguisher in a key recovery attack
is as follows:

1. Create Y = [2%/2+2-7 /j53] structures of 2™ plaintexts each. In each struc-
ture choose Py randomly and let L = Py &V} be the set of plaintexts in the
structure.

2. Initialize an array of 2m**™f counters. Each counter corresponds to a dif-
ferent guess of the my, subkey bits of E, and the my subkey bits of E'y.

3. Insert the N =Y - 2™ ciphertexts into a hash table according to the n —ry
ciphertext bits that are set to 0 in Vy. If a pair agrees on these n — 7 bits,
check whether the ciphertext difference is in Xy.

4. For each collision (Cy,C3) which remains, denote C;’s structure by Sc, and
attach to C; the index of S¢, and vice versa. ‘

5. In each structure S we search for two ciphertexts C; and C; which are
attached to some other S’. When we find such a pair we check that the
P; ® P, (the corresponding plaintexts) is in X3, and check the same for the
plaintexts which P; and P, are related to.

6. For all the quartets which passed the last test denote by (P, Pa, Ps, Py)
the plaintexts of a quartet and by (C;,Cs,C3,C4) the corresponding ci-
phertexts. Increment the counters which correspond to all subkeys Kj, Ky
(actually their bits which affect the o and ¢ differences, respectively) for
which Ejp,, (P1) © Eby, (P2) = Eby, (P3) ® Eby, (P4) = a and Ef_Klf(Cl) @

E;Klf (C3) = E;Klf (Cy) ® Ef‘K‘! (Cyq) = 6.
7. Output the subkey with maximal number of hits.

The data complexity of the attack is N = 27Y = 27[27/2+2-7 /5G] cho-
sen plaintexts. The time complexity of Step 1 (the data collection step) is N
encryptions. The time complexity of Step 2 is 2"**™f memory accesses in a
trivial implementation and only one memory access using a more suitable data
structures (like B-trees).

Step 3 requires N memory accesses for the insertion of the ciphertexts into
a hash table (indexed by the n — r bits which are set to 0 in V). The number
of colliding pairs is about N2 .27/7"/2 as there are N plaintexts divided into
2"~71 bins (each bin correspond to a value of the n — r; bits). Note that we
not necessarily use all the bins due to large memory requirements (i.e., we can
hash only according the first 30 bits set to 0 in V). For each collision we check
whether the difference of the ciphertexts of the colliding pair belongs to X ;. We
keep all the 2!/ values of X in a hash table, and thus, the check requires one
memory access for each colliding pair. Out of the 2"/ possible differences for a
colliding pair, only 2'/ differences are in X (i.e., can occur in a right quartet),
and thus, about N? - 2% ~"~! pairs remain. The time complexity of this step is
N + N?.27~"=1 memory accesses on average.

Step 4 requires one memory access for each pair which passes the filtering
of Step 3. In a real implementation it is wiser to implement Step 4 as part of
Step 3, but we separate these steps for the sake of simpler analysis. As there are
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N?2.2t1=n=1 guch pairs, the time complexity of this step is on average N2.2tr—7~1
IMemory accesses.

Step 5 implements a search for possible quartets. In a right quartet both
(P1, P») and (Ps3, Py) must satisfy that Ey(Py) @ Ey(P2) = Ey(P3) @ Ey(Py) = a,
and thus any right quartet must be combined from some P;,P, € S and
P, Py € S where S and S are two (not necessarily distinct) structures. Moreover,
a right quartet satisfies that E;I(Cl) @ E;I(C;;) = EI_I(CQ) ® E!_I(C4) =4,
and thus C) is attached to S¢, and C; is attached to S¢, and as P3, Py are from
the same structure then — S, = S¢,. Therefore, in each structure S we search
for colliding attachments, i.e., pairs of ciphertexts in S which are attached to the
same (other) structure S. The N2.2t~"~1 attachments (colliding pairs) are dis-
tributed over Y structures, and we get that approximately (N - 2tr+m—n-1)2/y
possible quartets are suggested in each structure (where a quartet corresponds to
a pair of plaintexts from some structure attached to the same structure). We im-
plement the test in the same manner as in Step 3, i.e., keeping a hash table Hg for
each structure S and inserting each ciphertext C' to Hg. according to the index
of the structure attached to C. Denoting the plaintexts of the suggested quartet
by (P1, P», P3, Py) and their corresponding ciphertexts by (Cy,Cs,C3,Cy), we
first check that P, & P, € X,. This test requires one memory access for each
possible quartet. The probability that the value P, @ P, is in X, is 2%~ 7. A
quartet which fails this test can be discarded immediately. Therefore, out of the
N?2.922ts+2r—2n-2 nossible quartets only N2 - 22tr+m+te—2n=2 qyartets remain.
As stated before, this filtering requires one memory accesses for each candidate
quartet, thus the algorithm requires N2-22t+2m=2n=2 memory accesses. We can
discard more quartets by testing whether P3&® Py € X}. In total this step requires
N2 .22t +2rp=2n=2 (] 4 2%=7"v) memory accesses and about N2 . 22ts+2ts—2n=2
quartets remain after this step.

In Step 6 we try to deduce the right subkey from the remaining quartets.
Recall that a right quartet satisfies Ey (P )®Ey(P) = o = Ey(P3)®Ep(Py). Both
pairs are encrypted by the same subkey, hence, a right quartet must agree on K
(the m;, subkey bits which enter F} and affect the output difference ). There are
2% possible input differences that lead to « difference after E}, therefore, 2™t
subkeys on average take one of these values into the difference a. As each pair
suggests 2~ subkeys, they agree on average on (2m+ )2 /2(2ms) = 2ms—2t—1
subkeys for F,. We can find these options by keeping in a precomputed table
either the possible values for any pair on its own, or for the whole quartet.
Repeating the analysis for E¢, (Cy,C3), and (Cs,Cy) we get about gmy—2ty—1
subkeys suggestions from each quartet. Thus, each of the remaining quartets
suggests 2t —2t5 =26 =2 possible subkeys. There are 27%1™s possible subkeys
and N?2.22t5+26,—2n=2 gmyt+my—2t;=2,—=2 — N2.9ms+ms—2n—4 hits The expected
number of hits for a (wrong) subkey is about N? - 2724, Since N < 2" is the
number of plaintexts the expected number of hits per wrong subkey is less than
274 = 1/16, and we can conclude that the attack almost always succeeds in
recovering subkey bits (since the number of expected hits for the right subkey
is 4), or at least reduces the number of candidates for the right subkey. We



