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PREFACE

Like the first edition that preceded it, this second edition of Calculus of Several
Variables is intended for students in science and engineering who have already
completed a study of the techniques and applications of differential and integral
calculus of real-valued functions of a single real variable. Thus it is designed for
the third and fourth semesters of a two-year calculus program. Typically, the third
semester deals with partial differentiation and multiple integration, and the fourth
with vector-valued functions.

Although this book was written as a sequel to the author’s Single-Variable
Calculus, 2nd Edition (Addison-Wesley, 1990), it does not require previous use
of that book, nor makes specific reference to it. Most of this book corresponds to
the last seven chapters of the author’s Calculus: A Complete Course (Addison-
Wesley, 1990). Chapters 1 to 7 of this book are essentially identical to Chapters
12 to 18 of the Complete Course; all sections and exercises are the same except
that this book has one extra section in Chapter 7 devoted to orthogonal curvilinear
coordinates. Also, the four appendices in this book present, respectively, material
on two-dimensional vectors, conic sections, first-order differential equations, and
second-order differential equations, all of which have been drawn from various
chapters and appendices of Calculus: A Complete Course.

Although this book treats the same topics as the first edition, and largely in the
same order, many local revisions have been made to clarify explanations, to improve
exercise sets (by additions, deletions, and reorderings), and to provide some extra
material. Some sections, such as those dealing with parametric surfaces and surface
integrals, have been completely rewritten. A new section (7.6) develops formulas for
the vector operators grad, div, and curl in terms of general orthogonal curvilinear
coordinates. This was added at the request of some students who needed that material
in electrical engineering courses.

Some Features of the Text

e There is an emphasis on geometry and the use of geometric reasoning in solving
problems.

e Wherever appropriate the relationship between several-variable calculus and
linear algebra is noted. For example, the Chain Rule is interpreted in terms of
matrix multiplication. A brief, optional section on matrix algebra is included in
the first chapter for this purpose.

ix
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o Partial differential equations, in particular Laplace’s equation, the heat (diffusion)
equation, and the wave equation, are used to illustrate elementary calculations
involving partial derivatives.

e Numerous applications of multivariable calculus are included in the book. Some,
such as the method of least squares, perturbation methods, envelopes of families
of curves and surfaces, and Newton’s method for systems of equations, are not
always to be found in calculus books.

o Classical mechanics is emphasized, especially in the applications of multiple
integrals, line and surface integrals. Such applications are facilitated by constantly
regarding integrals as “sums” of elements.

e Vector methods can greatly simplify the solution of problems in classical
mechanics. As an example, Kepler’s laws of planetary motion are derived
via elementary vector calculations rather than by the usual method of making
auspicious (but obscure) changes of variables in the appropriate differential
equation.

e Chapter 5 deals with the differential geometry of general curves in 3-space,
developing the Frenet-Serret formulas and showing that the shape of a curve is
determined by its curvature and torsion functions. Rotating frames of reference
(the Coriolis effect) is also discussed.

e The fundamental theorems of calculus in 3-space (Stokes’s Theorem and Gauss’s
Divergence Theorem) are applied to problems in fluid mechanics, electrostatics
and magnetostatics.

o The properties of conic sections are developed in Appendix 2, partly by analytic
methods and partly by elementary geometric arguments. Polar equations of conics
are treated in Section 5.4 on Kepler’s Laws.

Core and Optional Material

Any division of material into “core” and “optional” is necessarily somewhat arbitrary.
Most instructors would agree that the material of Sections 1.1-1.4, 2.1-2.6, 4.1—
4.5,5.1-5.2, 6.1 —6.6, and 7.1-7.4 constitute a core course in multivariable and
vector calculus. However, most of us would also be loath to teach a course devoid
of applications so we would certainly want to include part of Chapter 3, say Sections
3.1-3.3, and at least parts of Sections 4.6 and 7.5. Some of the most interesting
applications are in Sections 5.3 and 5.4, and they should be included in any course
where time permits or need for the topics requires. Each of Sections 3.4-3.6 is
self-contained and optional. Section 3.6 contains the only strictly numerical topic,
Newton’s method. Even for functions of only two variables, multivariable numerical
methods can be sufficiently complicated that the student should have a sophisticated
programmable calculator or, preferably, a computer to use them.
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CHAPTER 1:

COORDINATE GEOMETRY AND VECTORS IN 3-SPACE

A complete real-variable calculus program involves the study of
i) real-valued functions of a single real variable,
ii) real-valued functions of a real vector variable,
iii) vector-valued functions of a single real variable,
iv) vector-valued functions of a real vector variable.

Item (i) is the subject of a single-variable calculus course; we assume that the reader
is already familiar with that subject. This book is about items (ii), (iii), and (iv).
Specifically, Chapters 2—4 are concerned with the differentiation and integration
of real-valued functions of several real variables, that is, of a real vector variable.
Chapter 5 and part of Chapter 6 deal with vector-valued functions of a single real
variable. Most of Chapters 6 and 7 present aspects of the calculus of functions
whose domains and ranges both have dimension greater than one, that is, vector-
valued functions of a vector variable. Mostly we will limit our attention to vector
functions in two- and three-dimensional space.

In this chapter we will lay the foundation for multi-variable calculus by dis-
cussing analytic geometry and vectors in three and more dimensions. We assume
that the student, having already undertaken a study of single-variable calculus, is
familiar with the coordinate geometry of the Cartesian plane. We also introduce
matrices in spaces of any dimension, as these are useful (but not essential) for
formulating some of the concepts of calculus. This chapter is not intended to be a
course in linear algebra. We develop only those aspects which we will use in later
chapters, and omit most proofs.

/=i1.1 ANALYTIC GEOMETRY IN THREE AND MORE DIMENSIONS

We say that the physical world in which we live is three dimensional because
through any point there can pass three, and no more, straight lines which are
mutually perpendicular, that is to say, each of them is perpendicular to the other
two. This is equivalent to the fact that we require three numbers to locate a point
in space with respect to some reference point (the origin). One way to use three
numbers to locate a point is by having them represent (signed) distances from the
origin, measured in the directions of three mutually perpendicular lines passing
through the origin. We call such a set of lines a Cartesian coordinate system,
and each of the lines is called a coordinate axis. We shall usually call these
axes the z-axis, the y-axis and the z-axis, regarding the z- and y-axes as lying
in a horizontal plane and the z-axis as vertical. Moreover, the coordinate system
should have a right-handed orientation. This means that the thumb, forefinger
and middle finger of the right hand can be extended so as to point respectively in
the directions of the positive z-axis, the positive y-axis and the positive z-axis. For
the more mechanically minded, a right-handed screw will advance in the positive
z direction if twisted in the direction of rotation from the positive z-axis towards
the positive y-axis. (See Fig. 1.1.1.)
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P=(z,y,2)
-

Q =(z,y,0)
FIGURE 1.1.1 FIGURE 1.1.2

With respect to such a Cartesian coordinate system, the coordinates of a point
P in 3-space constitute an ordered triple of real numbers, (z,y, z). The numbers
z, y and z are, respectively, the signed distances of P from the origin, measured
in the directions of the z-axis, the y-axis and the z-axis. (See Fig. 1.1.2.)

Let @ be the point with coordinates (z,y,0). Then @ lies in the zy-plane
directly under (or over) P. (Q is the vertical projection of P onto the zy-plane.)
If r is the distance from the origin O to P and s is the distance from O to @), then,
using two right-angled triangles, we have

32=z2+y2 and frz=sz+z2=a:2+y2+z2.
Thus the distance from P to the origin is given by

=22 +y? +22.

Similarly, the distance between points P, = (z,y1, 21) and P> = (z2, 92, 22) 18

V(@2 — 212+ (2 — y1)? + (22 — 21).

Just as the z- and y-axes divide the zy-plane into four quadrants so also the
three coordinate planes in 3-space (the zy-plane, the zz-plane and the yz-plane)
divide 3-space into eight octants. We call the octant in which z > 0, y > 0 and
z > 0 the first octant. When we draw graphs in 3-space it is sometimes easier to
draw only the part lying in the first octant.

Equations and inequalities involving the three variables z, y and z generally
define subsets of points in 3-space. Usually a single equation represents a surface
(a two-dimensional object), and a single inequality represents a three-dimensional
region (having volume). Two equations represent the intersection of the two sur-
faces represented by each of them, and so usually represent a curve or line (a
one-dimensional object).
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EXAMPLE 1.1.1 i) The equation y = 0 is satisfied by those points, and only those points, which
lie in the zz-plane, that is, the vertical plane containing the z- and z-axes.
Thus y = 0 is the equation of that plane.

ii) The equation z = 1 represents the horizontal plane consisting of all points
lying at distance one unit above the zy-plane.

iii) The inequality z > 1 represents the half-space consisting of all points lying
on or above the plane in (ii).

iv) The equation y = z represents the vertical plane (the plane parallel to the
z-axis) passing through the line with equation y = z in the zy-plane. (See

Fig. 1.1.3.)
2 /,4_"\
\_/
/\V\ z=1
—
o
| | =
y / Y
o 2 +y?=4
‘plane T=y ©
FIGURE 1.1.3 FIGURE 1.1.4

v) The equation z” + y? + 2% = 4 represents the sphere consisting of all points at
distance 2 from the origin.

vi) The inequality z? + y* + 2> < 4 represents the ball consisting of all points
inside or on the sphere in (v).

vii) In the zy-plane the equation 2>+ y? = 4 represents a circle of radius 2 centred
at the origin. In 3-space it represents the circular cylinder with axis along the
z-axis which intersects the zy-plane in that circle. (See Fig. 1.1.4.) Since the
equation does not depend on z, all points on the vertical line through any point
on the surface will also lie on the surface.

viii) The pair of equations z> + y*> = 4, z = 1 represents the circle in which the
horizontal plane z = 1 intersects the vertical cylinder z> + y> = 4. The circle
has radius 2 and centre at the point (0,0, 1). (See Fig. 1.1.4.)

In Section 1.4 we will see many more examples of geometric objects in 3-space
represented by simple equations.
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Mathematicians and users of mathematics frequently need to consider n-dimen-
sional space where n is greater than three, and may even be infinite. Students
sometimes have difficulty in visualizing a space of dimension four or higher. The
secret to dealing with these spaces is to regard the points in n-space as being

ordered n-tuples of real numbers; that is, (z,z2,..

.,Tp) 1S a point in m-space

instead of just being the coordinates of such a point. We stop thinking of points
as existing in physical space and start thinking of them as algebraic objects. We
usually denote n-space by the symbol R™ to show that its points are n-tuples of
real numbers. Thus R* and R® denote the plane and 3-space respectively. Note
that in passing from R> to R™ we have altered the notation a bit — in R* we called
the coordinates z, y and z while in R"™ we called them z,, x>, ...and z, so as not
to run out of letters. We could, of course, talk about coordinates (z, 2, x3) in R,
and (z,z,) in the plane R?, but (z,v,2) and (z,y) are traditionally used there.
While we think of points in R™ as n-tuples rather than geometric objects, we

do not want to lose all sight of the underlying geometry. By analogy with the two-
and three-dimensional cases, we still consider the quantity

Vi — 212+ @2 — 222 + -+ - + (Yn — Tn)?

as representing the distance between the points with coordinates (z;, x>, . .
,Yn). Also, we call the (n — 1)-dimensional set of points in R"

and (y|,y2, &

.y Ty)

which satisfy the equation z,, = 0 a “hyperplane” by analogy with the plane z =0

in R>.

EXERCISES

Find the distance between the pairs of points in Exercises

1-4.
1.

3.
5.

. What is the distance from the point (1,1, ..

(0,0,0) and (2,—1,-2) 2. (=1,—1,—1) and (1,1, 1)
(1,1,0) and (0,2,—2) 4. (3,8,—1) and (2,3, —6)

What is the shortest distance from the point (z,y, 2) to
a) the zy-plane? b) the z-axis?

. Show that the triangle with vertices (1,2,3), (4,0,5)

and (3,6,4) has a right angle.

. Find the area of the triangle with vertices (1,1,0),

(1,0,1) and (0,1, 1).

. What is the distance from the origin to the point

(1,1,...,1) in R™?
., 1) in n-

space to the closest point on the z-axis?

In Exercises 10-21 describe (and sketch if possible) the set
of points in R? which satisfy the given equation or inequal-

ity.
10.

z=2 11. y > —1

12.

14.

15.

16.

18.

20.

13. z+y=1
2+yt+22=4

(- 12 +@y+2?+(z-3)=4
2+y?+22=22 17. 22 +y2 < 4

z2+22=4

z2> \/z2+y2

19. z=¢2

2. z+y+2=1

In Exercises 22-31 describe (and sketch if possible) the set
of points in R3 which satisfy the given pair of equations or
inequalities.

22.

{22
y=2

23.{“l
y==z
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26. {

2 2 2
z°+y*+2° =
w?+22=1

COORDINATE GEOMETRY AND VECTORS IN 3-SPACE

2,,2.,.2_ 2,,2
2+y’+22=4 28 {yzz 29, J T +y <1
25'{:1:2+y2+22=4a: “lz<y 22y
3 ol > +y?+22 < 1 z> a2
29, J o+ =l 30. = 31 4 22
{z=z Vzt+yr<z Pyt +22 <1

|=41.2 VECTORS IN 3-SPACE

F;('.'z,y?,z)

FIGURE 1.2.1

A vector is a quantity possessing both magnitude and direction. In this section
we are assuming that you have encountered vectors in your previous mathematical
studies. A brief introduction to two-dimensional vectors is given in Appendix 1,
where they are used to describe the motion of an object in the plane R>. It is a good
idea to read the first four pages of that appendix before proceeding further with
this section. The algebra and geometry of plane vectors described there extends to
spaces of any number of dimensions; we can still think of vectors as represented
by arrows, and sums and scalar multiples are formed just as for plane vectors.

In this section we state properties of vectors, as developed in Appendix 1,
for vectors in 3-space. It will be evident how extensions can be made to higher
dimensions.

Given a Cartesian coordinate system in 3-space, we define three standard
basis vectors, i, j, and k, represented by arrows from the origin to the points
(1,0,0), (0,1,0), and (0,0, 1) respectively. See Fig. 1.2.1. Any vector in 3-space
can be written as a linear combination of these basis vectors; for instance, the
vector r from the origin to the point (z,y, z) is given by

r=zi+yj+zk.

We say that r has components z, y, and z. The length of r is

Ir| = /22 + 9% + 22,

Such a vector from the origin to a point is called the position vector of that point.
Generally, however, vectors do not have any specific location; two vectors are
regarded as being equal if they have the same length and the same direction, that
is, if they have the same components.

If P = (z1,y1,21) and P, = (z2,92,22) are two points in 3-space, then the

—
vector v = P| P, from P; to P, has components z; — z1, y2 — y1, and 2, — 21, and
is therefore represented in terms of the standard basis vectors by

é . -
V=PP=(z2— z))i+ (Y2 — y0)j + (22 — 21k.

Sums and scalar multiples of vectors are easily expressed in terms of compo-
nents. If u = u;i+uyj +usk and v =v;i+v,j + 13k, and if ¢ is a scalar (i.e. a real
number) then

u+v=(u;+vi+ (up+v2)j+ (u3 +v3)k,
tu = (tui+ (tuz)j + Gus)k.



