Proteolytic enzymes

a practical approach

Edited by R J Beynon & J S Bond

blished in the **Practical Approach Series** ries editors: D Rickwood & B D Hames

OXFORD UNIVERSITY PRESS Oxford New York Tokyo

Proteolytic enzymes

a practical approach

Edited by **R J Beynon**

Department of Biochemistry, University of Liverpool, PO Box 147, Liverpool L69 3BX, UK

J S Bond

Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0308, USA

IRL Press Eynsham Oxford England

© IRL Press at Oxford University Press 1989

First published 1989

All rights reserved by the publisher. No part of this book may be reproduced or transmitted in any form by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system, without permission in writing from the publisher.

British Library Cataloguing in Publication Data

Proteolytic enzymes 1.Cysteine protein I. Beynon, Robert J. II. Bond, Judith S. III. Series 547.7'58

ISBN 0-19-963058-5 ISBN 0-19-963059-3 Pbk

Library of Congress Cataloging-in-Publication Data

Proteolytic enzymes: a practical approach / edited by Robert J. Beynon, Judith S. Bond
p. cm. — (Practical approach series)
Includes bibliographies and index.
1. Proteolytic enzymes. I. Beynon, Robert J. II. Bond, Judith S. III. Series.
[DNLM: 1. Peptide Hydrolases. QU 136 P9678]
QP609.P78P77 1989
574.19'256—dc19
ISBN 0-19-963058-5
ISBN 0-19-963059-3 Pbk

Previously announced as:

ISBN 1-85221-104-0 (hardbound) ISBN 1-85221-105-9 (softbound)

Proteolytic enzymes a practical approach

S 1341

Series editors: Dr D Rickwood Department of Biology, University of Essex Wivenhoe Park, Colchester, Essex CO4 3SQ, UK Dr B D Hames

Department of Biochemistry, University of Leeds Leeds LS2 9JT, UK

Affinity chromatography Animal cell culture Antibodies I & II Biochemical toxicology **Biological membranes** Carbohydrate analysis Cell growth and division Centrifugation (2nd Edition) Computers in microbiology DNA cloning I, II & III Drosophila Electron microscopy in molecular biology Gel electrophoresis of nucleic acids Gel electrophoresis of proteins Genome analysis HPLC of small molecules HPLC of macromolecules Human cytogenetics Human genetic diseases Immobilised cells and enzymes Iodinated density gradient media Light microscopy in biology Lymphocytes Lymphokines and interferons Mammalian development Medical mycology

Microcomputers in biology Microcomputers in physiology Mitochondria Mutagenicity testing Neurochemistry Nucleic acid and protein sequence analysis Nucleic acid hybridisation Oligonucleotide synthesis Photosynthesis: energy transduction Plant cell culture Plant molecular biology Plasmids Prostaglandins and related substances Protein function Protein sequencing Protein structure Proteolytic enzymes Spectrophotometry 5 B and spectrofluorimetry Steroid hormones Teratocarcinomas and embryonic stem cells Transcription and translation Virology

Preface

Proteolytic enzymes are of widespread interest to the scientific community because they can be used as tools, and because they play critical roles in biological systems. For the protein chemist, synthetic chemist, membrane biologist and clinician, proteases are tools or probes to study polypeptides and macromolecular structures, or to interfere with pathological processes. For the biochemist, physical chemist, cell biologist and molecular biologist, they are of interest for the intrinsic properties and for the irreversible modifications they effect in physiological systems. Proteases are involved in a multitude of important physiological processes that range from the functional activation or inactivation of proteins by single proteolytic events, to the complete dissolution of proteins to their constituent amino acids. They have become the focus of a wide range of basic and applied research, and are targets for intervention, experimentally and therapeutically.

The focus of this book is on practical aspects of the handling, characterization, inhibition and use of this class of enzymes. Because of the diversity of the proteases, authors have provided general advice to the reader along with some specific examples. Our hope is that the book will provide ideas and protocols for scientists studying a wide variety of systems and problems.

A note on terminology: the term *protease* is synonymous with the term *peptide hydrolase*; these terms include all enzymes that cleave peptide bonds. Proteases are further subdivided into *exopeptidases*, enzymes that cleave peptide bonds at the aminoor carboxy-terminus, and *endopeptidases*, those that cleave peptide bonds internally in a polypeptide. The term *proteinase* is synonymous with *endopeptidase*.

R.J.Beynon and J.S.Bond

Contributors

R.J.Beynon

Department of Biochemistry, University of Liverpool, Liverpool L69 3BX, UK

N.P.Birch

Laboratory of Neurochemistry and Neuroimmunology, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA

J.S.Bond

Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0308, USA

P.E.Butler

Department of Biochemistry, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0614, USA

R.S.de la Motte

Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68583-0718, USA

G.N.DeMartino

Department of Physiology, University of Texas, Health Science Center, 5352 Harry Hines Boulevard, Dallas, TX 75235, USA

B.M.Dunn

Department of Biochemistry, University of Florida, Box J-245, Gainesville, FL 32610, USA

A.V.Flannery

Department of Biochemistry, University of Liverpool, Liverpool L69 3BX, UK

P.B.Gordon

Department of Tissue Culture, Norsk Hydro's Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, Oslo 3, Norway

C.M.Johnson

Department of Biological Science, University of Stirling, Stirling FK9 4LA, UK

V.Kasche

Arbeitsbereich Biotechnologie II, Technical University of Hamburg-Harburg, Box 90 14 03, 2100 Hamburg, West Germany

Y.Peng Loh

Laboratory of Neurochemistry and Neuroimmunology, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA

H.Nagase

Department of Biochemistry, University of Kansas Medical Center, 39th and Rainbow Boulevard, Kansas City, KS 66103, USA

H.Neurath

Department of Biochemistry, University of Washington, J-405 Health Science Building, Seattle, WA 98195, USA

M.J.North

Department of Biological Science, University of Stirling, Stirling FK9 4LA, UK

J.M.Pratt

Department of Biochemistry, University of Liverpool, Liverpool L69 3BX, UK

N.Price

Department of Biological Science, University of Stirling, Stirling, FK9 4LA, UK

G.Salvesen

Department of Pathology, Box 3712, Duke University Medical Center, Durham, NC 27710, USA

G.Sarath

Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68583-0718, USA

P.O.Seglen

Department of Tissue Culture, Norsk Hydro's Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, Oslo 3, Norway

F.W.Wagner

Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68583-0718, USA

Abbreviations

	aming and aroun
-AA- ABz or oABz	amino acyl group o-aminobenzoyl
AC	
α2-M	acetyl
	alpha ₂ -macroglobulin
APMSF	4-amidinophenylmethanesulphonyl fluoride
APH	aminophthalhydrazide
ATEE	<i>N</i> -acetyl-L-tyrosine ethyl ester
azoprotein	protein covalently dyed with sulphanilamides
BAEE	N-benzoyl-L-arginine ethyl ester
BISTRIS	bis(2-hydroxyethyl)imino-tris(hydroxymethyl)methane
BSA	bovine serum albumin
BOC or tBOC	t-butyloxycarbonyl
BTEE	N-benzoyl-L-tyrosine ethyl ester
Bz	benzoyl
CBZ	carbobenzoxy, benzyloxycarbonyl, Z
DCI	3,4-dichloroisocoumarin
	diisopropyl fluorophosphate
or Dip-F	President and the solution
DMSO	dimethyl sulphoxide
DNS	dimethylaminonaphthalenesulphonyl, dansyl
DPCC	diphenyl carbamyl chloride
DTT	dithiothreitol
E-64	L-trans-epoxysuccinyl-leucylamido(4-guanidino)butane
EDTA	ethylenediamine tetraacetic acid
ELISA	enzyme-linked immunosorbent assay
EtOH	ethanol
FA	furylacryloyl
FITC	fluorescein isothiocyanate
F ₃ MCA	4-trifluoromethylcoumaryl-7-amide
GHCl	guanidinium hydrochloride
HEPES	<i>N</i> -2-hydroxyethylpiperazine- <i>N</i> -2-ethane-sulphonic acid
HFBA	heptafluorobutyric acid
HOAc	acetic acid
HPLC, hplc	high performance liquid chromatography
IAA	iodoacetic acid
MBNA	4-methoxy- β -naphthylamide
MCA or NHMec	4-methylcoumaryl-7-amide
Me ₂ SO	dimethyl sulphoxide
MeO	methoxy-
MeOH	methanol
MMP	matrix metallo-proteinases; includes MMP1 (collagenase), MMP2 (gelatinase) and MMP3 (stromelysin)
MSH	melanocyte stimulating hormone
NA or NHNan	4-nitroanilide or <i>p</i> -nitroanilide
or pNA	
NEDD	N-(1-naphthyl) ethylenediamine dihydrochloride
NEM	N-ethyl maleimide

NHNap	2-naphthylamide
Nph	p-nitrophenylalanine
OMe	methyl ester
PAGE	polyacrylamide gel electrophoresis
PBS	phosphate buffered saline
PCMB	<i>p</i> -chloromercuribenzoate and <i>p</i> -hydroxymercuribenzoate
PMSF	phenylmethanesulphonyl fluoride
POMC	pro-opiomelanocortin
PrOH	propanol
PVDF	polyvinylidene difluoride
RER	rough endoplasmic reticulum
RP-HPLC	reverse-phase HPLC
SDS-PAGE	sodium dodecyl sulphate polyacrylamide gel electrophoresis
STI	soybean trypsin inhibitor
SUC	succinyl
SV	secretory vesicles
TCA	trichloroacetic acid
TES	N-tris[hydroxymethyl]methyl-2-aminoethane sulphonic acid
TFA	trifluoroacetic acid
TIMP	tissue inhibitor of metallo-proteases
TLC	thin layer chromatography
TLCK	tosyl-lysine chloromethyl ketone
Tos-	tosyl, (4-toluenosulphonyl)
t-PA	tissue plasminogen activator
TPCK	tosylamido-2-phenylethyl chloromethyl ketone
Tris	tris-(hydroxymethyl)-aminoethane
uPA	urinary plasminogen activator
Z	benzyloxycarbonyl, carbobenzoxy (= CBZ)

Contents

ABBREVIATIONS		xvii	
1.	THE DIVERSITY OF PROTEOLYTIC ENZYMES H.Neurath	1	
	Introduction	1	
	Classification and Mechanism	1	
	Protease Inhibitors	4	
	Proteolytic Processing and Physiological Regulation	5	
	Cellular Localization and Isolation	9	
	Molecular Biology of Proteases	10	
	Summary	12	
	References	12	
2.	PURIFICATION OF PROTEOLYTIC ENZYMES	15	
	G.N.DeMartino		
	Introduction	15	
	General Principles	15	
	Assays During Purification	15	
	General Purification	16	
	Affinity Chromatography	20	
	Substrate affinity chromatography	20	
	Inhibitor affinity chromatography	21	
	Functional affinity chromatography	22	
	Monitoring the Purification	22	
	References	22	
3.	PROTEASE ASSAY METHODS	25	
	G.Sarath, R.S.de la Motte and F.W.Wagner		
	Introduction	25	
	Assays with Natural Substrates	25	
	Endopeptidase assays	25	
	Exopeptidase assays	30	
	Assays with Synthetic Substrates	31	
	Endopeptidase and aminopeptidase substrates	31	
	Spectrophotometric assays	31	
	Fluorimetric assays	34	
	Miscellaneous fluorimetric methods	38	
	Carboxypeptidase substrates	40	
	Radiometric assays	41	
	HPLC assays for peptidases	42	

	Solid-Phase Protease Assays	45
	Gel electrophoretic methods	45
	Plate assays	48
	Miscellaneous solid-phase assays	48
	Assays for histochemical studies	54
	Acknowledgements	54
	References	54
4.	DETERMINATION OF PROTEASE MECHANISM B.M.Dunn	57
	Introduction—The Importance of Mechanistic Classification	57
	The serine peptidases	59
	The cysteine peptidases	59
	The aspartic peptidases	59
	The metallo-peptidases	61
	Methods for Determining the Mechanistic Class	61
	Classification based on 'standard' inhibitors	61
	Chemical modification/identification	65
	Mechanistic distinctions-intermediates	66
	Kinetic Studies to Probe the Mechanism in More Detail	69
	Notes on 'ideal' assays	69
	Kinetic determination of $K_{\rm m}$ and $k_{\rm cat}$	69
	pH Dependence of the kinetic parameters	73
	Solvent deuterium isotope effects Transition state analogues and substrate alteration	73 74
	Determination of Primary Specificity of a Protease	74
	Degradation of standard proteins and peptides	76
	Cleavage of homologous synthetic peptides	78
	References	78
		17
5.	INHIBITION OF PROTEOLYTIC ENZYMES	83
	G.Salvesen and H.Nagase	
	Introduction	83
	The Meaning of Inhibition	83
	The Importance of Kinetics	84
	Practical Inhibitor Kinetics	84
	Irreversible inhibitors	85
	Reversible inhibitors	86
	Practical use of inhibition constants	87
	Non-specific Inhibitors	89
	α -Macroglobulins	89
	Peptide aldehydes	89
	Peptide chloromethyl ketones	91
	Metal chelators	91

	Class-specific Inhibitors	93
	Serine proteinases	93
	Cysteine proteinases	96
	Metallo-proteinases	98
	Aspartic proteinases	99
	Inhibitors as Active-site Titrants	100
	Cysteine proteinases	100
	Serine proteinases	100
	Suppression of Proteolysis	100
	Therapeutic Value of Proteinase Inhibitors	101
	Acknowledgements	102
	References	102
	References	102
6.	PREVENTION OF UNWANTED PROTEOLYSIS	105
	M.J.North	
	To percent have a finance	105
	Introduction	105
	Proteolytic Susceptibility of Native Proteins	106
	Intrinsic factors determining the susceptibility of proteins to	
	proteolysis	106
	The influence of other molecules on susceptibility to proteolysis	106
	Properties of endogenous proteinases	108
	Identification of Proteolysis as a Problem	108
	Changes in protein properties	108
	Mimicking an effect with added proteinases	110
	Checking samples for proteinase activity	110
	Inhibition of Proteinases	110
	Outline of approaches for reducing proteinase activity	110
	Suppression of endogenous proteinase activity	111
	Preventing proteolysis by denaturation	111
	Use of proteinase inhibitors	113
	Removal of Proteinases	119
	Choice of starting material	119
	Cell disruption and fractionation	122
	Selective removal of proteinases during purification	123
	Acknowledgements	123
	References	123
7.	PROTEASES IN PEPTIDE SYNTHESIS	125
7.	V.Kasche	125
	Introduction	125
	Kinetically Controlled Peptide Synthesis	126
	Mechanism	126
	Yield	126
	Maximal Yield in Equilibrium-controlled Synthesis	128
		xi

Selecting the Optimal Protease	129
Purity of the protease	129
P_1 - and P_1' -specificity	129
Yield-controlling Factors in the Synthesis of a Peptide Bond with	
One Enzyme	134
Protection of the P ₁ ' carboxyl group; stereospecificity	134
рН	134
Temperature	136
Ionic strength	136
Solvent composition	137
Planning a Protease-catalysed Synthesis of a Peptide Bond	
What enzyme?	138
Equilibrium- or kinetically-controlled synthesis?	138
Free or immobilized enzyme?	139
Experimental Methods for Protease-catalysed Peptide Synthesis	140
Enzyme purity and purification	140
Enzyme immobilization	140
Substrates and buffers	140
Monitoring the synthesis; purification of products	140
Optimizing the yield	141
Proteases in Peptide Synthesis: Limitations and Perspectives	141
References	142

8.	PROTEOLYSIS OF PROTEINS FOR SEQUENCE ANALYSIS	
	AND PEPTIDE MAPPING	145
	A.V.Flannery, R.J.Beynon and J.S.Bond	
	Introduction	145
	Preparation of Substrate	146
	Proteolytic Digestion	149
	Protease primary specificity	149
	Protease stock solutions	149
	Nature of substrate	151
	Buffers	151
	Duration	152
	Termination	152
	Separation and Recovery of Digestion Products	153
	SDS-PAGE	153
	HPLC/FPLC	155
	Acknowledgements	161
	References	161

9.	PROTEINASES AS PROBES OF CONFORMATION OF	
	SOLUBLE PROTEINS	163
	N.C.Price and C.M.Johnson	
	Introduction	163
	Scope of the chapter	163
	Proteolysis of native proteins	163
	Practical Aspects	164
	Choice of proteinase	164
	Monitoring the reaction	165
	Controlling the extent of the reaction	167
	Methods of inactivating proteinases	168
	Information from Studies of the Proteolysis of Proteins under	
	Native or Near-native Conditions	173
	The tertiary structures of native proteins	173
	Conformational changes in proteins	175
	The unfolding and refolding of proteins	176
	Conclusions	179
	References	179
10	PROTEASES AS TOPOLOGICAL PROBES FOR	
10.	MEMBRANE PROTEINS	181
	J.M.Pratt	101
	Introduction	181
	In-vitro Translocation Systems	184
	In-vitro translocation systems and the use of proteases	184
	Experimental protocol	184
	Optimizing the proteolysis step	185
	Inhibition of added proteases	186
	Trouble-shooting	186
	Topology of Membrane Proteins	190
	Introduction	190
	Experimental protocol	190
	References	191
11.	SOLUBILIZATION OF MEMBRANE PROTEINS BY	103
	PROTEOLYSIS D. E. Butlar	193
	P.E.Butler	
	Introduction	193
	Classification of membrane proteins	193
	Limitations of the technique	194

	Advantages of the technique	194
	Choice of proteinase	195
	Use of Proteinases to Hydrolyse Anchor Sequences	196
	Preparation of the membrane fraction	196
	Solubilization with trypsin	196
	Solubilization with papain	197
	Solubilization with other proteinases	197
	Solubilization by autolysis	198
	Modifications to methodology	198
	Solubilization of mouse kidney membrane proteins by papain	199
	Conclusions	200
	Acknowledgements	200
	References	200
12.	EXOGENOUS CONTROL OF INTRACELLULAR PROTEIN	
	CATABOLISM	201
	P.B.Gordon and P.O.Seglen	
	Introduction	201
	Exogenous Control of Protein Degradation by Physiological Agents	201
	Experimental aspects	201
	Amino acids	202
	Amino acid derivatives	203
	Anabolic factors and hormones	203
	Catabolic factors and hormones	203
	Exogenous Control of Protein Breakdown by Non-physiological Agents	204
	Agents which alter the physicochemical properties of lysosomes	204
	Proteinase-inhibitory peptides	206
	Vanadate .	207
	Microtubule poisons	207
	Protein synthesis inhibitors	208
	Divalent-ion chelators	208
	3-Methyladenine: a specific inhibitor of autophagic sequestration	208
	Inhibitors of energy production	209
	Control of Protein Breakdown by Low Temperature	209
	References	209
13.	PROTEASES IN PROTEIN MATURATION	211
	N.P.Birch and Y.P.Loh	
	Introduction	211
	Cellular Compartmentalization of Protein Maturation	212
	Characterization of the Intracellular Maturation Pathway of	
	Pro-proteins	213
	General considerations	213
	Methods for studying the intracellular maturation pathway	216

	Isolation and Identification of Protein Maturation Proteases	221
	Cell biological-biochemical approaches	221
	Molecular biological-genetic approaches	225
	Further studies of the purified maturation proteases	227
	Concluding Remarks	228
	References	228
AP	PENDICES	
I.	The Schechter and Berger nomenclature for protease subsites R.J.Beynon and J.S.Bond	231
II.	Commercially available proteases J.S.Bond	232
III.	Commercially available protease inhibitors R.J.Beynon and G.Salvesen	241
IV.	PIR accession numbers to sequences of commercially available proteases and inhibitors A.V.Flannery and R.J.Beynon	250
V.	Suppliers of specialist items	252
INI	NDEX	