GINEERING

ARCHITECTURE-DRIVEN
SOFTWARE DEVELOPMENT

RICHARD F. SCHMIDT

Software Engineering
Architecture-Driven
Software Development

Richard F. Schmidt

BT R SR "f
i 1
e A w
5& :]LJ B
e

AMSTERDAM » BOSTON « HEIDELBERG « LONDON
NEW YORK * OXFORD * PARIS * SAN DIEGO
SAN FRANCISCO * SINGAPORE * SYDNEY » TOKYO

Morgan Kaufmann is an imprint of Elsevier

Acquiring Editor: Todd Green

Editorial Project Manager: Lindsay Lawrence
Project Manager: Priya Kumaraguruparan
Designer: Mark Rogers

Morgan Kaufmann is an imprint of Elsevier
225 Wyman Street, Waltham, MA, 02451, USA

Copyright © 2013 Published by Elsevier Inc. All rights reserved

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or any information storage and
retrieval system, without permission in writing from the publisher. Details on how to seek
permission, further information about the Publisher’s permissions policies and our
arrangements with organizations such as the Copyright Clearance Center and the

Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods or professional practices, may become
necessary. Practitioners and researchers must always rely on their own experience and knowledge in
evaluating and using any information or methods described herein. In using such information or
methods they should be mindful of their own safety and the safety of others, including parties for
whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors,
assume any liability for any injury and/or damage to persons or property as a matter of products
liability, negligence or otherwise, or from any use or operation of any methods, products,
instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Schmidt, Richard, 1956-
Software engineering: architecture-driven software development / Richard Schmidt.
pages cm
Includes bibliographical references and index.
ISBN 978-0-12-407768-3
1. Software engineering. 2. Software architecture. 3. Computer software—Development. I. Title.
QA76.758.5364 2013
005.1—dc23 2013000589

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Printed in the United States of America

1314151617 10987654321

% Working together
to grow libraries in

Ee—

honkmd developing countries

www.elsevier.com ¢ www.bookaid.org

For information on all MK publications visit our website at www.mkp.com

Software Engineering

IREELE W, FELARPDFIGEE www. ertongbook. com

A Note from the Author

Several controversial subjects are raised by the material presented within the
book. These provocative topics address the scope of “software engineering” and
are central to the author’s motivation for publishing this material. If the Software
Engineering discipline was well established and proven to achieve successful
results, then there would be no need to publish and promote this material. However,
this is not the case. The success rate of projects within the software industry has
hovered around 30% for the past two decades. The failure of these projects can be
associated with two primary symptoms which can be observed in almost every soft-
ware development project and methodology. The first symptom involves an almost
complete misconception of what a software product design is and how to develop a
complete design description. The second symptom involves the lack of a standard
set of software engineering principles and practices which establish an appropriate
scope for a software engineering discipline.

The material presented in this book provides a comprehensive set of practices
which are integrated and tightly coupled. However, this material deviates with pop-
ular “best practices” which have been encouraged due to the lack of a flawless way
to design software. Some of my comments may seem critical; when suggesting an
approach to fix a flawed system, criticism is inevitable. The intent is to stimulate
the software community into a broad dialog by which a crucial set of software engi-
neering principles and practices can be established.

I hope that the reader can set aside his or her personal opinions concerning
mainstream concepts on software engineering. Do not let these controversial topics
divert your attention from the fundamental line of reasoning being discussed. This
book offers a rigorous, disciplined approach to the engineering of software prod-
ucts. It is time for the software community at large to take action to improve its
dismal performance. I hope that this material will prove beneficial to future genera-
tions of professional software engineers.

Richard Schmidt
April 15, 2013

Xv

Preface

The purpose of this book is to provide comprehensive treatment of the software engi-
neering discipline. The material presents software engineering principles and prac-
tices that are based on systems engineering. This book provides a detailed explanation
of the essential software engineering philosophy, which emphasizes a disciplined
approach to designing software products. To accomplish this, Section 1, Software
Engineering Fundamentals, discusses the software development framework and pro-
ject constructs within which software engineering is performed. Section 2, Software
Engineering Practices, presents six technical conventions that convey a philosophy for
harnessing computing technologies, applying scientific principles and invoking inge-
nuity to architect (i.e., design) the structure of software products. Section 3, Stages
of Software Engineering Application, discusses the role a software engineering team
undertakes within a software development project to establish and control the soft-
ware product architecture. Each stage of a typical software development project is
discussed with a focus on how a software engineering team collaborates with other
technical and project-related organizations to influence the architectural design and
implementation of software products. These sections clarify the practices, principles,
tasks, and artifacts associated with a disciplined approach to software engineering.
The fundamental concepts this material is based on were derived from systems
engineering practices to achieve the objectives identified in Table 1. These objectives
are achieved by applying a set of principles and practices derived from the systems
engineering discipline that have been successfully applied for over 50 years to develop
complex systems. The emphasis is on the establishment of a complete software archi-
tecture, which enables each element of the product to be specified for fabrication,
assembly, integration, and testing (FAIT). Applying these practices to the field of soft-
ware engineering provides the basis for resolving the challenges listed in Table 1.
Current practices for software analysis and design stem from computer pro-
gramming languages and the logical constructs by which the languages process
data. This has driven software design methodologies, such as object-oriented
design, that were not formulated to handle the complexity of advanced software
products. By adapting systems engineering practices, this book presents a com-
prehensive approach to designing a software product by establishing rigorous soft-
ware engineering principles and practices. These software engineering practices are
clearly articulated to ensure that there is no uncertainty concerning their importance
and applicability to software development. These practices are applied during a
walkthrough of the software development process to control, revise, and manage
the software architecture throughout a typical software development project con-
text. The contents of this book are aligned with the Software Engineering Body of
Knowledge' (SWEBOK) key process areas identified in Table 2. This alignment

'Institute of Electrical and Electronics Engineers (IEEE) Computer Society, http://www.computer.
org/portal/web/swebok.

Xvii

xviii

Preface

Table 1 Software Engineering Challenges and Objectives

Design must take place Know what you are building before you begin to improve
before coding cost and scheduling accuracy
Reduce product complexity with design detail and
precision
Cost, schedule, and risk control
Delivering the software Complete design diagrams, drawings, and specifications
technical data package for software implementation (construction)
Allocate requirements Requirements for decomposition and allocation among
among elements of the software components and units
design configuration Requirements traceability
Integrated product and Concurrent design and development of product
process development sustainment capabilities
(IPPD) Life-cycle costs control
Preparing a software Planned software component integration developed
integration strategy during architectural design activities
Efficient software implementation planning
Controlling software Reduce software maintenance/support costs
complexity Efficient, user-friendly interactions
Enabling change Stakeholder/user satisfaction
assimilation Product competitiveness
Trade-off analysis Cost and schedule control
Design optimization
Product evolution/incremental release stability
Increased probability of project success
Preplanned product Delayed functionality to later releases to permit on-time
improvement product delivery

with the SWEBOK demonstrates how the topics addressed in the book are arranged
and associated with the topics addressed by the SWEBOK. However, the SWEBOK
is based on current software development practices and does not embrace the sys-
tems engineering practices in a rigorous, technical manner.

Book outline and subject matter

The following provides a brief overview of the content of each section and chapter
of this book. The sections arrange the material into three coherent topics intended
to permit readers to increase their knowledge and understanding of the principles
(Section 1), practices (Section 2), and application of software engineering (Section
3). By adapting systems engineering practices to the field of software engineering,

Preface

Table 2 SWEBOK Key Process Areas

Software requirements knowledge areas

Software design knowledge area

Software construction knowledge area

Software testing knowledge area

Software maintenance knowledge area

Software configuration management
knowledge area

Software engineering management
knowledge area

Software engineering process
knowledge area

ﬁ

Section 1
Chapter 3

Section 2
Chapter 7
Chapter 9

Section 3
Chapter 17

Section 1
Chapter 3
Chapter 6

Section 2
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14

Section 3
Chapter 18

Section 3
Chapter 19

Section 3
Chapter 19
Chapter 20

Section 1
Chapter 5

Section 3
Chapter 17
Chapter 18
Chapter 19
Chapter 20

Section 2
Chapter 9
Chapter 16
Section 3
Chapter 20, configuration audits
addressed (FCA/PCA)
Section 1
Chapter 4
Section 2
Chapter 9
Chapter 16, project and technical plans
addressed; work packages addressed
Section 3, project and technical plans
addressed; work packages addressed
Section 2
Section 3

(Continued)

Xix

XX

Preface

Table 2 SWEBOK Key Process Areas (Continued)

Software engineering methods knowledge Section 2
area Chapter 13, Software Design Synthesis
Practice object-oriented methods
addressed, as applicable
Chapter 14, modeling and prototyping
addressed
Software quality knowledge area Section 3, identifies software quality
assurance tasks within test and evaluation
subsections

this material is intended to provide an innovative, disciplined, and technically
demanding approach to developing software products.

Section 1: Software engineering fundamentals

This section discusses the basic principles associated with software engineering
and their execution within a software development venue. The fundamental prin-
ciples, practices, and doctrine are presented to establish software engineering as a
professional discipline. Software product characteristics and software development
strategies are discussed to stress the challenges confronting software development
projects. Software engineering, as an organizational entity, bridges the notable dif-
ferences in outlook and perception that exist among technical and project man-
agement specialists. Therefore, this section addresses the integration of software
engineering practices with project management responsibilities and other software
development roles.

Chapter 1: Introduction to Software Engineering. This chapter provides an
overview of software engineering concepts, principles, and practices that are
necessary to cope with the challenges of designing and developing complex
software products. Software engineering practices and tools are investigated and
their relationships to project management mechanisms are identified.
Chapter 2: Generic Software Development Framework. This chapter dis-
cusses the progression of software development activities describing how the
software product is defined, designed, and implemented. This chapter tracks

a typical software development effort through a series of sequential stages

of development separated by project milestones and reviews. The discussion
addresses the relationship between the software technical and project manage-
ment realms of control.

Chapter 3: Software Architecture. This chapter identifies the composition
of the software architecture in terms of the software product, computing envi-
ronment, and post-development processes that enable product sustainment.

It relates the generation of architecture design representations, models, and

Preface

documentation to technical and project-related mechanisms necessary to keep
the software development effort within budget and on track for scheduled
delivery. Techniques for establishing the software requirement specifications
are discussed, and functional and physical architectures are aligned with the
stages of software development. This chapter discusses how the software prod-
uct architecture provides the structural foundation for software implementation
(programmatic design, coding, integration, and testing), as well as product life-
cycle support.

Chapter 4: Understanding the Software Project Environment. This chapter
acquaints readers with the software product characteristics that cause software
development to be convoluted and incomprehensible. It addresses the software
product complexity challenges and relates those to the project constructs and
practices proven to facilitate successful software development endeavors. The
discussion provides insight that will help reduce project impediments, upheaval,
cancellations, and failures.

Chapter 5: Software Integrated Product and Process Development (IPPD).
This chapter presents the philosophy of IPPD and its impacts on project scope
and post-development considerations. It attempts to substantiate the need for a
well-conceived and structured software architecture to ensure that the product’s
useful life is extended as a result of engineering attention to life-cycle concerns
during development. The simultaneous engineering of software post-develop-
ment processes is examined to show how early architectural decisions can affect
life-cycle and ownership costs.

Chapter 6: Impediments to Software Design. This chapter examines the
underlying characteristics of software that cause its “design” praxis to be
unconventional and more difficult to fathom. It investigates the characteristics
of software as a design and construction material that challenges conventional
engineering scrutiny. This chapter presents the software engineering principles
that govern the design of software products. Finally, this chapter introduces the
software design chasm to contrive a resolution which permits software products
to be engineered and designed.

Section 2: Software engineering practices

This section identifies the six practices that contribute to the profession of software
engineering: (1) software requirements analysis, (2) functional analysis and alloca-
tion, (3) software design synthesis, (4) software analysis, (5) software verification
and validation, and (6) software control. Each practice is characterized by a num-
ber of tasks that every software engineering professional should comprehend. These
practices establish a coherent set of tasks focused on the design and elaboration of
the software product architecture.

Chapter 7: Understanding Software Requirements. This chapter presents
an approach to developing software requirement specifications that are derived
from stakeholder needs and expectations and contribute to determining the

XXi

XXii

Preface

scope of the software development effort. Software specifications drive the defi-
nition of the software architecture, but should not infer any architectural design
scheme. Software requirements serve as the point of departure for deriving the
software functional and physical architectures. The architecture is engineered by
formulating a functional architecture and configuring the physical architecture.
Every element of the architecture must be specified and traceable back to the
software specifications. The relationships among software requirements, soft-
ware engineering tasks, and project and technical plans are examined.

Chapter 8: Software Requirements Analysis Practice. This chapter identi-
fies the specific tasks that must be selectively applied to establish the software
product and post-development process specifications. This practice involves the
allocation of performance quotas among lower-level functional and structural
elements of the software architecture. This practice begins with the effort to
solicit stakeholder needs and expectations and concludes with establishing a
software product requirement baseline.

Chapter 9: Software Requirements Management. This chapter discusses the
importance of controlling the software architecture in a proactive manner to
facilitate the assessment of proposed changes. Software requirement manage-
ment tools and practices are considered that enable a software engineering team
to perform pragmatic appraisals of the change impact to the software architecture
and the latitude of project resources to accommodate a desired alteration. The
intent is to equip the development team to react judiciously to authorized changes
and to assimilate modifications into the software architecture while not disrupting
project scope, plans, or progression toward a successful conclusion.

Chapter 10: Formulating the Functional Architecture. This chapter discusses
the nature of the functional architecture and how it is developed by decompos-
ing specified requirements into successive layers of functional elements. Each
functional element is specified in an approach of continual refinement that cul-
minates when a function is recognized to be uncomplicated and for which an
implementation can be realized. The functional architecture provides a logical
and coherent representation of the software product’s behavior in response to
stimulus, events, or conditions that arise within the computing environment.
Chapter 11: Functional Analysis and Allocation Practice. This chapter iden-
tifies the specific tasks that must be considered to ensure that a complete, con-
sistent, and traceable functional architecture is fashioned. Analysis is performed
to understand the operational and software product behaviors by examining,
decomposing, classifying, and specifying the top-level functions derived from
requirement specifications. Performance requirements are allocated among con-
tributing functions to establish measures of effectiveness and performance for
lower-level functional elements.

Chapter 12: Configuring the Physical Architecture. This chapter describes
the purpose and strategy for arranging and specifying the software product’s
physical architecture. The physical architecture identifies the foundational
building-blocks for software unit design, coding, and testing. The software

Preface

integration strategy is developed to identify the product structure and prescribes
how the software units and components are to be incrementally combined, inte-
grated, and tested to form the complete software product.

Chapter 13: Software Design Synthesis Practice. This chapter identifies the
specific tasks that must be considered to ensure that a complete, consistent, and
traceable physical architecture is generated. Design synthesis is a proven sys-
tems engineering practice for transitioning from a pure functional representation
of a product to a physical configuration. It involves a “make-or-buy” trade-off
that corresponds to a software “implement-or-reuse” decision.

Chapter 14: Software Analysis Practice. This chapter identifies the specific
tasks that must be performed to conduct design-alternative trade-off analyses
and risk assessments. Architectural design decisions must be made with suffi-
cient insight to restrain growth in application complexity and software life-cycle
costs. The tasks associated with conducting a trade-off analysis and risk assess-
ment are described to provide a basis for understanding the nature of architec-
tural design decisions and their impact on the software development effort.
Chapter 15: Software Verification and Validation Practice. This chapter
identifies the specific tasks that must be performed to ensure that the elements
of the software architecture remain consistent and aligned with authorized
change proposals and requests. Verification tasks must be performed to ensure
that the software implementation and test and evaluation efforts are synchro-
nized with the software architecture specifications and design documentation.
Chapter 16: Software Control Practice. This chapter identifies the specific
tasks that must be selectively applied to ensure the software product architecture
reflects the current design concepts and incorporates authorized change propos-
als, requests, and design decisions. Requirements traceability must be embed-
ded within the software architecture and associated documentation so that the
technical team can promptly and efficiently respond to decisions of the change
control boards. In addition, it is necessary for authorized change proposals and
requests to be reflected in project and technical plans, schedule, budgets, and
work-package descriptions.

Section 3: Stages of software engineering application

This section discusses the roles and responsibilities assigned to technical organi-
zations throughout a software development project. The participation of technical
organizations in a software engineering integrated product team (IPT) is stressed.

Chapter 17: Software Requirements Definition. This chapter identifies the
manner by which the software requirement specifications are generated by the
software engineering IPT. The contributions of participating organizational
representatives are identified as the requirements for the software product, and
post-development processes are established.

Chapter 18: Software Architecture Definition. This chapter identifies the
manner by which the software functional and physical architectures are defined

xxiii

xxiv Preface

during the preliminary and detailed architecture stages. These stages focus on an
IPPD approach to facilitate the establishment of the software implementation,
testing, and post-development process infrastructures necessary to facilitate the
fulfillment project objectives.

Chapter 19: Software Implementation. This chapter identifies the tasks to be
performed by the software implementation organization to programmatically
design, code, and test software units and conduct software integration and test-
ing. During this phase the post-development processes are implemented concur-
rently to support acceptance testing and the deployment readiness review.
Chapter 20: Software Acceptance Testing. This chapter identifies the tasks

to be performed by the software test and evaluation organization during the
conduct of software product acceptance testing. The roles of the participating
organizational representatives are identified as they monitor acceptance testing,
react to test failures and respond to software problem reports resulting from
acceptance testing. In addition, the post-development processes must be quali-
fied to confirm that they are ready to support software product distribution,
training, and sustainment operations.

Contents

A Note from the ANROT : ssssusamvasnsitrimmsvmsssssis s imss i smsssismvnisse XV

Preface................

SECTION 1

SOFTWARE ENGINEERING FUNDAMENTALS

CHAPTER 1 Introduction to Software Engineering................c......... 7
1.1 Specifying software requirementsccoceveererueereercnsesenerens 10
1.2 Software architeCture.cccooeueuerereririeiececreeisee e 11
1.3 Integrated product and process developmentccccceveueucnee 12
1.4 Integrated product tEAMScveucururueuruereerenisereieeeeeseieneseeaene 13
1.5 Work breakdown StIUCIUTEc.coveereeereerirerersseeseessessensessennaens 15
1.6 Software breakdown StIUCLUIE..........cccovrenirirriinrecneiresesisnineiens 15
1.7 Specification and documentation trees............oocevreeererererrereen. 17
1.8 Integrated master plan and scheduleccoeueieriinniiniinnneeens 17
1.9 Reviews and auditS........ccoureeeeeeciiierienieeneeiceeeee e 18
1.10 Configuration management and change control..............cc.c.c..... 20
1: 11 "Trade-off analysis. .o mssminsismnenimiiassigmim 22
1.12 RiSK MBARGEMEAE wuaiamvnsimmivmssmmmsissimssm s 24
1.13 Modeling and Simulation. ..s:ssssassossusessissssissaissssssssssssasss 24

CHAPTER 2 Generic Software Development Framework................. 29
2.1 Software breakdOWn SIIUCTUIEcoueveimruereneieeie e 31
2.2 Software development PrOCESSeevereereererirreieseesereeeenenenes 34

2.2.1 Requirements definition Stagecocvevevereereseriesicennnne 35
2.2.2 Preliminary architecture definition stage..........c.ccccoceueuenee. 36
2.2.3 Critical architecture definition stage............coceeereeivecuenenns 37
2.2.4 Software unit code and testing Stagecouvevvieriniinnenns 38
2.2.5 Software component integration and testing stage............. 39
2.2:6 Product testing Stage.... s isssmsimissanissoms avsssssssassmones 39
2.2.7 Acceptance testing StAFE.. . c.osurassusssosronvnmssssasssssssisnssrasass 40
2.3 SUIMMATY ..ottt st stesae e ebesereesesaesbe s esessassesenassssesaens 41

CHAPTER 3 Software Architectureccoooeiiniciinnnnes 43
3.1 Stakeholder needs relationships and dependencies 46
3.2 Software requirements baseline relationships and

dependencies..........coovueuieeniiniiinic i s 48
3.3 Computing environment relationships and dependencies........... 49
3.4 Test and evaluation relationships and dependencies................... 49
3.5 Functional architecture relationships and dependencies............. 50

vi

Contents

3.6
3.7
3.8

CHAPTER 4
4.1
4.2
4.3

44
45
4.6

CHAPTER 5

5.1

5.2

CHAPTER 6
6.1
6.2

Physical architecture relationships and dependencies................. 51
Post-development process relationships and dependencies........ 51
Motivation for the software architecture............ccccoeeevvecrvenecnnee. 52
Understanding the Software Project Environment..... 55
Integrated product tEAMS.c.eeueererrererieieiieieeere e eeeee e 60
Software architeCturec.ooveoueeieiieriiiiieniiene e 61
Complexity control mechanismscccooeeveevieieeneniereniinieninns 63
4.3.1 Work breakdown SHUCHITE, i...oicsusssssssssiossnsassissossspsanssns 63
4.3.2 Product breakdown StruCtUIeccoovveveerveiiinressneniennns 64
4.3.3 SpPeCifiCation treEceeveueeriiirieiiiiieie ettt 65
4.3.4 Documentation treecccoueerreruerueresrereesessereeeesenaeens 65
4.3.5 Software product baselines...........ccoeveveuevereeeenerceneane 65
4.3.6 Requirements traceability guidelinesc..ccccceeeueennne. 67
4.3.7 Trade-off analysiS ..« uumnsnmmsmmsasssismmisssiais 68
4.3.8 Software complexity MEasUres..........cccevervevimrucvnriueeeeianan 70
Software nomenclature reiStryooveevvervieeeierieenreereeeseesaaens 74
Software integration SIrateZycc.eceeevereeeerirenerrenenee e 74
Project and technical planning.............cccccecieiienieiiineiccncinnenn. 75
4.6.1 Technical organization plansc..cccceeievieneneiniieinnns D
4.6.2) Project Plans . emraisssnssssmsmiismesisesasases 77
Software Integrated Product and Process
Development ... 79
Application of IPPD to software........c..ccvvvivniiiciiiiniiininene. 82
5.1.1 CuStOmer fOCUScceiruierieniirierie ettt 84
5.1.2 Concurrent development of products and processes 84
5.1.3 Early and continuous life-cycle planning...........cccce.e... 86
5.1.4 Maximize flexibility for optimization and use

of contractor unique approaches.............cccoeevrceinincnnn. 87
5.1.5 Encourage robust design and improved

Process CaAPADIIitY ..o sossvmissmsmssssssssmssssssmasussasss 88
5.1.6 Event-driven schedulingcccccoveoiiicrcininiiniiiecnee 88
5.1.7 Multidisciplinary teamworkcccoeireciineneninenene 88
5.1.8 EBmpowerment::usuiis s 88
5.1.9 Seamless management tOOIS........c.ccceerevuerieneienieesinnnensonne 89
5.1.10 Proactive identification and management of risk............. 89
Software engineering and development.............cccocovecveeeeneneens 89
Impediments to Software Design...............cc..ccccccoooo..e... 93
Software as a raw material..........cccocoeeviiiiiiniiiniciiceccneee 95

Evolution of software technologiescc.ocveveereninrincennn. 98

