Proceedings of the Second International Symposium on

Parallel Architectures,
Algorithms and Programming

Edited by Ye Tian, Chen Zhong and Hong Shen

University of Science and Technology of China Press

i N M P O e s
Proceedings of the Second International Symposium on

Parallel Architectures,
Algorithms and Programming

i —

Edited by Ye Tian, Chen Zhong and Hong Shen

University of Science and Technology of China Press

B RS B (CIP 42
B ERIE TR R . BRI HT &S BG83 =Proceedings of

the Second International Symposium on Parallel Architectures, Algorithms and
Programming: H<3C/HEF, #MR, L E%H. —&B.: PEBEE AR ZEH R,
2009.12

ISBN 978-7-312-02538-9

L& IO Qb @tk MLOFATHEN —HEVIRREW—E PR
RAEW—CE X FHEY — BRI —EFR AR AN —E X OEF
Eit—E R ARSI —CE—F5C IV, TP338.6-53 TP301.6-53 TP311.1-53

o [iR A B B8 CIP $iE 4% (2009)5 213187 &

Proceedings of the Second International Symposium on Parallel Architectures,
Algorithms and Programming
edited by Ye Tian, Cheng Zhong and Hong Shen

Copyright(©2009 University of Science and Technology of China Press
96 Jinzhai Road

Hefei, Anhui

P.R.China

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical photocopying, recording or

otherwise, without the prior written permission of the copyright owner.

HEETT PERBESARR S B

bt ZREGIEAT R 96 5, B 230026
Mtk hitp:/press.ustc.edu.cn

B POV A 4% WA B o 1 35 R)
2 EFEBE

710mm x 1000mm 1/16

13.375

1

197 F

20094 12 A% 1R

2009 4F 12 A% 1 WENR

60.00 7T

En

a

A SO O B OH R
SH N SR MR

Conference Organization

Honorary Chairs

Guoliang Chen, Univ. Sci. & Tech. of China
Benjamin W. Wah, UTUC

General Chairs

Hong Shen, Univ. Sci. & Tech. of China
Baoshan Chen, Guangxi Univ.

Program Co-Chairs

Naijie Gu, Univ. Sci. & Tech. of China
Cheng Zhong, Guangxi Univ.

Technical Program Committee

Hamid Arabnia, Univ. of Georgia

Ling Chen, Yangzhou Univ.

Xuebin Chi, CNIC, CAS

Francis Chin, Univ. of Hong Kong
Qingshi Gao, Univ. Sci. & Tech. of China
Guangcan Guo, Univ. Sci. & Tech. of China
Yijie Han, Univ. of Missouri

Yanxiang He, Wuhan Univ.

Tao Jiang, Uni. of California - Riverside
Hai Jin, Huazhong Univ. of Sci. & Tech.
Guojie Li, ICT, CAS

Ming Li, Univ. of Waterloo

Minglu Li, Shanghai Jiao Tong Univ.
Xiaoming Li, Peking Univ.

Xuandong Li, Nanjing Univ.

Jianzhong Li, Harbin Institute of Tech.
Huimin Lin, IS, CAS

Zhiyong Liu, ICT, CAS

Zeyao Mo, IAPCM

Koji Nakano, Hiroshima Univ.

Lionel M. Ni, HKUST

Yi Pan, Georgia State Univ.

Yong Qi, Xi’an Jiaotong Univ.

Depei Qian, Beihang Univ.

Xubang Shen, CASC

Ninghui Sun, ICT, CAS

XianHe Sun, Illinois Institute of Tech.
Zhongxiu Sun, Nanjing Univ.

Feiyue Wang, IA, CAS

Baowen Xu, Nanjing Univ.

Zhiwei Xu, ICT, CAS

Xin Yao, Univ. of Birmingham

‘Wu Zhang, Shanghai Univ.

Xianchao Zhang, Dalian Univ. of Tech.
Xiaodong Zhang, Ohio State Univ.
Yunquan Zhang, IS, CAS

Weimin Zheng, Tsinghua Univ.
Zhengwei Zhou, Univ. Sci. & Tech. of China
Zhihua Zhou, Nanjing Univ.

Preface

Welcome to the second International Symposium on Parallel Architectures, Al-
gorithms and Programming (PAAP 2009). The symposium is sponsored and
organized by University of Science and Technology of China (USTC), Guangxi
University, and China Computer Federation Technical Committee on High Per-
formance Computing. The symposium is also supported by National Natural
Science Foundation of China. PAAP’09 is an international forum for scientists,
engineers, and practitioners to present their latest research ideas, progresses, and
applications in all the areas of parallel and distributed computing with the focus
on parallel algorithms, architectures and programming techniques.

University of Science and Technology of China (USTC) was founded by the
Chinese Academy of Science (CAS) in 1958 in Beijing as a new type of na-
tional university. The university moved to Hefei, Anhui Province in 1970. Since
its foundation, USTC has made distinguished achievements in talent fostering,
scientific research and technology innovation. It has become an important base
for top-quality talent training and high-level scientific research for the nation.
According to the Ministry of Science and Technology, USTC is one of the best
four universities in the science research performance in China. USTC ranks con-
sistently among the best in the reviews of the Chinese top universities by the
US journal “Science” and the French journal “Research”.

The conference is hosted by Guangxi University at Nanning, Guangxi, China.
Nanning is the capital of Guangxi Zhuang Autonomous Region of China, she is a
city full of cultural distinctiveness, economic vitality, and an expanding openness
to and involvement with the global community. She has received many awards in-
cluding membership in “Top 50 Comprehensive Power Cities in China” and “Top
Tourist Cities in China”, in addition to being designated as a “China Hygiene
Model City”, the “Dubai International Award for the Best Practices to Improve
Living Conditions” and the recipient of “Habitat Scroll of Honor Award” in 2007.
The Annual Nanning International Folk Songs Festival in Autumn attracts wide-
spread attention by combining the talents of musical headliners from the across
the globe with a special blend of centuries-old folk song traditions, many “undis-
covered” tourist attractions, and an ever-expanding economic trade. Since 2004,
Nanning has hosted the annual China-ASEAN Expo sponsored by China and
the ten ASEAN member states, at which China and ten of its Southeast Asian
neighbors will offer a rich mixture of business opportunities, cultural experiences
and tourism attractions.

Guangxi University was established in 1928. The university is in Nanning,
the capital city of Guangxi Zhuang Autonomous Region. Located in charming
subtropical scenery, the campus covers an area of 307 hectares with a building
area of 745 000 square meters. The university has a library collection of over

2.02 million volumes, 3 national key disciplines, 6 national “211 Project” key
construction discipline groups, 4 key laboratories of the ministerial level, 5 key
laboratories of the provincial level, 21 provincial key disciplines, 1 demonstra-
tion base for teaching and research of modern agriculture technique, 46 research
institutes or centers and 67 university and college laboratories.

We are very pleased to have seven distinguished researchers to present the
keynote speeches at the symposium: “System Software for High Performance
Computing ” by Vice Chairman of CCF, Prof. Zheng Weimin from Tsinghua Uni-
versity; “Unified Change of System on Chip” by Academician of CAS, Prof. Shen
Xubang from Xi’an Institute of Micro-Electronics; “High-performance Comput-
ers and Their Applications” by Academician of CAS, Prof. Chen Guoliang from
USTC; “Green Computing” by Prof. Sun Yuzhong from Institute of Computing
Technology, CAS; “Parallel Numerical Computing” by Prof. Sun Jiachang from
Institute of Software, CAS; and “Interconnection Networks with Path Selection”
by Prof. Fan Jianxi from Soochow University.

The three-day technical program contains keynote speech sessions, sessions
for invited papers, and technical sessions. We would like to express our thanks
to all the authors who have submitted their papers to PAAP’09. We also thank
all the members of the Technical Program Committee, as well as all the external
referees for their works and contributions in paper reviewing process. We would
like to extend our special thanks to the members of the symposium organizing
committee for their excellent work in organizing this successful event.

The proceedings contain qualified papers selected from submissions for pre-
sentation at PAAP’09. The publishing of the proceedings is supported by a
number of projects supported by National Science Foundation of China under
Grants No. 60533020, 60963001, 60563003 and 60772034.

il

Contents

A Hybrid Index Structure on Multi-core Cluster Architecture........... 1
Bai Long, GuangZhong Sun, Guoliang Chen
A Job Shop Scheduling Problem in Software Testing................... 19

Jie Zhou,Hong Zhu

A TS-GATS Based Approach for Scheduling Data-intensive
Applications in Data Grids o i 30
Dan Liu, Kenli Li, Xiaoyong Tang, Edwin H.M. Sha

An Improved Spectral Clustering Algorithm Based on Random Walk 54
Xianchao Zhang, Quanzeng You

Fairness Analysis of Peer-to-Peer Streaming Systems 67
Di Wu

Image Denoising by 2-D Anisotropic Wavelet Diffusion................. 83

Chenglin Mao, Hong Shen

LogGP(h): Incorporating Communication Hierarchy into the LogGP
Y e <) 96

Yuzin Tang, Yunquan Zhang, Xiangzheng Sun

Neuron Networks Classification Algorithm Based on Bionic Pattern
Recognition
Qimai Chen, Haiging Zhou, Yong Tang

Optimal Proxy Caching for Peer-to-Peer Assisted Internet On-Demand
Video Streaming Services
Ye Tian, Zhenhua He, Bangchuan Liu

Parallel Sorting for Multisets on Multi-core Computers................ 135
Zengyan Qu, Cheng Zhong, Xia Li

Process-level and Thread-level Parallel Programming Mechanism and
Performance Optimization Techniques on Multi-core Clusters
Hualin Huang, Cheng Zhong, Zhonglong Lu

The Super-node Parallel Systems Based on the Memory Centric
INtercOnNection - . .o vv ettt i e e e e 182
Xiu Xu, Lili Jiang

Webpage Segmentation based on Gomory-Hu Tree Clustering in
Undirected Planar Graphveeiiiiiariarn et 192
Xinyue Liu, Xianchao Zhang, Ye Tian and Hongfei Lin

it

A Hybrid Index Structure on

Multi-core Cluster Architecture

Bai Long, GuangZhong Sun, Guoliang Chen

School of Computer Science and Technology
University of Science and Technology of China
Hefei, 230026, China

{blong, gzsun, glchen}@mail.ustc.edu.cn

Abstract. Since multi-core has been mainstream of processors, multi-
core cluster architecture become more important for many server appli-
cations, including high-dimensional data processing. In this paper, we
present a hybrid-index structure for high-dimensional data on multi-
core clusters. To make full use of two-level parallelization of multi-core
clusters, we design an index structure for high-dimensional data: HKD-
tree(Hybrid K-Dimensional Tree). An HKD-tree is combined by KD-
tree and LSH, which uses LSH in the leaf nodes of KD-tree. We paral-
lelizes operations(tree construction and query processing) of HKD-tree.
We evaluate the performance of HKD-tree with real image dataset. Due
to the experiment results, HKD-tree is more efficiently for query process-

ing on multi-core cluster architecture.

Key words: multi-core; parallelization; HKD-tree; cluster; high-dimensional
data

1 Introduction

Over the past years, the development of CPU have been promoted by
the development of processor technology and computer architecture. Since
multi-core architectures were invented, it has been getting important ef-
fect in software development on cluster systems. It is generally believed
that multi-core [1] architecture has good potential of performance and

advantages to realize the following: Multi-core architecture can divide

a complex function of the processor chip into several cores to solve. So
multi-core bring about the rapid upgrade of performance. Nowadays with
the development of the size limit of the chip as well as the cost factors,
the multi-core architecture have gradually become the mainstream of the

computer.

Symmetric multiprocessor systems (SMPs) [2] are also becoming wides
pread, both as compute servers and as platforms for high performance
parallel computing. At present uses the SMP technology structure cluster
node to become a tendency. In recent years, high-dimensional data index
based similarity search has become one of the most important research
area. One important problem among this area is how to efficiently find the
similar feature vectors from the large amount of high-dimensional data
spaces. Many applications such as image databases, medical databases,
GIS (Geographic Information System) and CAD (Computer Aided De-
sign) /CAM(Computer Aided Manage) applications require enhanced in-
dexing for content based image retrieval. In this applications, how to

indexing of high-dimensional data has become increasingly important [3].

Today, a lot of new index structures and algorithms have been pro-
posed. There are several index structures for high-dimensional data spaces,
such as KD-tree, LSH(locality sensitive hashing), R-tree, KDB-tree, X-
tree, etc. As a general rule, these structures were used for the serial archi-
tecture of the hardware devices. However, with the constant development
of multi-core technology, high-dimensional index structure parallelization

has been put on the agenda of the index technical’s development.

In our paper, we proposed an HKD-tree high-dimensional index struc-
ture, which is suitable for parallelization. Based on an HKD-tree index
structure, we could make full use of two-level parallelization of multi-core
clusters. We put the every computational nodes deal with the different
subtask. We first do the query in the subtrees using OpenMP in every
computational nodes. At the second, we merge the results which query

in the subtrees using MPIL. Therefore, every computational node could

parallel processing the subtask. An HKD-tree index structure is obviously
suitable for this parallel architecture.

In section 2, we will offer a detailed description of the high-dimensional’s
current situation and existing problems. In section 3, we will describe an
HKD-tree structure and its parallel algorithm specifically which we pro-
posed. In section 4, we will aim at experiment’s result to carry on the
corresponding analysis to the structure. In section 5, we will make con-

clusions and remarks.

2 Current Situation and Existing Problems

During the last decade, with the development of multimedia technol-
ogy, multimedia databases have become increasingly important in many
application areas. An important research problem in the field of multime-
dia databases is the content based retrieval of similar multimedia objects
such as images, text, and videos. However, like searching data in a re-
lational database, a content based retrieval needs to query the similar
objects as a basic requirement the database system. Most of the methods
solving similarity search use a feature transformation which transforms
important properties of the multimedia objects into high-dimensional
points (feature vectors). Thus, the similarity search is transformed into a
search of points in the feature space which are similar to query point in
the high-dimensional data space. Query operation in the high-dimensional
data spaces has therefore been a very important research area. To satisfy
this requirement, some new index structures and algorithms have been
invented. But they are not designed for the multi-core architecture. That
is to say, they are not suitable for the multi-core cluster architecture. Next
we come to specifically introduce several kinds of typical high-dimensional

index structures.

2.1 KD-tree

The KD-tree is a data structure invented by Jon Bentley in 1979 [4].
Although it’s too old, the KD-tree and its variants are still the most pop-
ular data structures used for searching in high-dimensional data spaces.
In computer science, KD-tree (short for k-dimensional tree) is a space-
partitioning data structure for organizing points in a k-dimensional data
space. KD-tree is a useful data structure for several applications. KD-tree
is a special case of BSP(Binary Space Partitioning) trees. It uses a set of
k keys to partition k-dimensional space.

If you want to construct a KD-tree, and you have a set of n points in
a k-dimensional space, the KD-tree is constructed recursively as follows:
At the first, we find a median of the value of the ith coordinates of the
points (initially, ¢ = 1). That is, a value M is computed, so that at least
50% of the points have their ith coordinate equal or greater than M, while
at least 50% of the points have their ith coordinate equal or less than M.
The value of z is stored, and the set P is partitioned into P; and Pg,
where P, contains only the points with their #th coordinate equal or less
than M, and |Pg| = |P|£1. When all the points have their own position,
the recursion stops. Its construction algorithm and query algorithm is as

follows: Algorithm1 and Algorithm?2

2.2 LSH

LSH(locality sensitive hashing) was first introduced by Indyk and
Motwani [5]. LSH function families have the property that objects that
are close to each other have a higher probability of colliding than objects
that are far apart. Specifically, let S be the domain of objects, and D be
the distance measure between objects.

Definition. A function family H= {h: S — U} is called (7, cr, py, po)-
sensitive for D if for any ¢, p€ §

e If D(q,p) < r then P.g[h(q) = h(p)] = p1,

KD-Tree Construction
if A=Null then
root:=P
else if A is the Lchild of X then
X.Lchild:=P
else
X.Rchild:=P
else if P[ij<Ali] then
KD-Tree Insert(A.Lchild,P,A)
else
KD-Tree Insert(A.Rchild,P,A)
end if

Algorithm 1: KD-Tree Construction

KD-Tree Query Processing
if A=Null then
return Null
else if A=P then
return A
else if P[i]<Alfi] then
KD-Tree Search(A.Lchild,P)
else
KD-Tree Search(A.Rchild,P)
end if

Algorithm 2: KD-Tree Query Processing

o If D(q,p) > crthen P, p[h(q) = h(p)] < pa.

To use LSH for approximate nearest neighbor search, we set ¢ > 1
and p; > pp. With these choices, nearby objects (those within distance r)
have a greater chance (pjvs.ps) of being hashed to the same value than
objects that are far apart (those at a distance greater than cr away).
Different LSH families can be used for different distance functions D,
Families for Jaccard measure, Hamming distance, l; and L are known
[5]. Datar [6] et al. have proposed LSH families for [, norms, based on
p-stable distributions [7]. Here, each hash function is defined as:

a-v+b
hap(v) = [—W—J

where @ is a d-dimensional random vector with entries chosen inde-
pendently from a p-stable distribution and b is a real number chosen
uniformly from the range [0,W]. Each hash function kg : R¢ — Z maps
a d-dimensional vector v onto the set of integers. The p-stable distribu-
tion used in this work is the Gaussian distribution, which is works for the

Euclidean distance.

LSH algorithm as follows: Algorithm3 and Algorithm4

LSH Construction

Make the Point Dataset X into binary string of Hamming Space

Choose k functions hi, bz, ...hy uniformly at random(with replacement)
from H. For any p € X, place p in the bucket with label g(p)=

(h1(p), ha(p), ...hx(p)). Observe that if each h; outputs one “digit”,each
bucket has a k-digit label.

Independently perform step(1) I times to construct I separate hash tables,

with hash functions g1, g2, ...q:.
Algorithm 3: LSH Construction

LSH Query Processing
1: For query ¢, make use of hash function from the Algorithm3, extract
gi(g),1 <1i < k, the selected hash tables entry
2: On the order of retrieve these tables, we can got the query results.

Algorithm 4: LSH Query Processing

2.3 Others

Other high-dimensional index structures include: KDB-Tree [8], R-
Tree [9],5-Tree [10], SH-Tree [11],and so on. Based on the above analysis,
we can see that the serial structure of the above-mentioned cases have sub-
stantial efficiency. But when they applied to such a parallel system of clus-
ter structures, it seems inappropriate. Therefore, in these high-dimension
based on the index structure, we give an overview of efficient parallel
search algorithm and the hybrid-index structure for high-dimensional

data under the cluster architecture.

3 Solutions

In this section, we introduce the hybrid kd-tree(HKD-tree). We dis-
cuss how to construct a HKD-tree and some operations in the hybrid tree.
We also discuss the node splitting algorithms and show how they parallel
expected search performance. We describe the tree operations and con-
clude with a discussion on where the hybrid trée fits parallelization under
the cluster architecture. Because most of search including the on-line and
off-line model, we from user’s angle mainly discuss the on-line perfor-
mance. That means, we primarily concern the query performance.(Our
CBIR.: http://search.ustc.edu.cn/cbir/)

3.1 HKD-tree Sructure

We first discuss the hybrid-index structure for high-dimensional data

under the cluster architecture. Similar to KD-tree, HKD-tree is also a

7

space-partitioning data structure for organizing points in a k-dimensional
space. We have proposed the hybrid-index structure under the cluster ar-
chitecture to solve the high-dimensional index problem. HKD-tree means
Hybrid KD-tree. In this hybrid-index structure, we have KD-tree and LSH
mixed. For the high-dimensional data,we use KD-tree in construction in-
dex. When we do the query in it,we can use LSH to solve the Nearest
Neighbor Search.

First, we describe the “space partitioning strategy” in a HKD-tree
i.e. how to partition the space into two subspaces when a node splits.
The first issue is the number of dimensions used to partition the node. A
HKD-tree always splits a node using a single dimension. A HKD-tree is
a binary tree in which every node is a k-dimensional point. Every non-
leaf node generates a splitting hyperplane that divides the space into
two subspaces. Points left to the hyperplane represent the left subtree of
that node and the points right to the hyperplane by the right subtree.
The hyperplane direction is chosen in the following way: every node split
to subtrees is associated with one of the k-dimensions, such that the
hyperplane is perpendicular to that dimension vector. When we do split
to the parallel start layer, we set the subtree’s node into the hash table
by hash function. So, for example, if for a split the “x” axis is chosen, all
points in the subtree with a smaller “x” value than the node will put in
the left subtree and all points with larger “x” value will be in the right
subtree. At the same time, we collect all the data points add into point
dataset X. HKD-tree algorithm as follows: algorithm5 and algorithm6,
and an HKD-tree structure is as follows Figure 1:

It is clear from the above discussion that a HKD-tree structure is more
suitable for parallel. Compared to other tree structure, HKD-tree make
the following improvements: The first change is in the representation. As
in other tree index techniques, they often use single index structure. Such
as KD-tree, R-tree, B-tree, LSH. etc. Therefore, their advantages and
weaknesses are highlighted. But in HKD-tree, we mixed KD-tree and

Fig. 1. HKD-Tree Structure

HKD-Tree Construction

1:
2:

11:
12:
13:

14:

15:

if A=Null then
root:=P

else if A is the Lchild of X then
X.Lchild:=P

else

X.Rchild:=P

: else if P[ij<A[i] then

HKD-Tree Insert(A.Lchild,P,A)
else
HKD-Tree Insert(A.Rchild,P,A)
else if our cpu have n cores and our HKD-tree have m subtrees in
log 2™+ layer. then
when m = n,we mapped these subtrees nodes into point dataset X
point dataset X = {Xi, Xp,...Xn}
That is mean, nodes of subtree m: mapped into point
dataset X3
end if

Algorithm 5: HKD-Tree Construction

