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Preface

This is not a book for the experts, nor is it written by one; it is a modest
attempt to lay down the basic foundations of the theory of iteration of ratio-
nal maps in a clear, precise, complete and rigorous way. The author hopes
that those who wish to learn something about the subject will be able to
do so from this book in a relatively painless way, and that it will serve as
a starting point from which many recent, and much deeper, works can be
tackled with some confidence.

The book begins, and ends, with a chapter consisting entirely of examples.
In the first chapter, the examples are quite straightforward and are discussed
from first principles without the advantage of any theoretical developments.
Many readers will want to omit this chapter, but its purpose is two-fold. First,
this subject is of interest to a large number of people not all of whom are
mathematicians, and it is hoped that some of these readers will appreciate the
more gentle start offered by this chapter; and second, in this chapter I illus-
trated most of the basic results of the theory in specific examples. The last
chapter also consists entirely of examples but, by contrast, a claim about a
particular example here demands as much formal verification as does the
proof of a theorem. The primary purpose of these examples is, of course, to
illustrate the theory developed earlier, but in addition to this, they have been
chosen to show the variety of possibilities that can occur, and some at least
go beyond those for which the computer-generated illustrations are now so
familiar. For the convenience of readers, I have inc'luded an index of examples
at the end of the text.

I have included a brief section at the beginning which describes some of
the elementary topics that I shall assume the reader is familiar with. Other
(more advanced) material is assumed at several other places in the text, but
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there, some explanation is merged with the general discussion. Each chapter
starts with a summary outlining the main objectives in that chapter. There
are, of course, occasions when I need to use more advanced results from other
parts of mathematics, and where I have thought that a brief discussion of
these would materially assist the reader I have included such a discussion in
the text. Where I felt that it would not, I have relegated further discussion to
an appendix to that chapter. Finally, and perhaps inevitably, I accept that
some important items are omitted (most notably, the existence of Herman
rings), but this is not in any sense meant to be a complete account of the
subject.

It has been my objective to provide as much detail as seems appropriate
for an average graduate student to understand the argument completely and
without too much effort, and the criterion for the inclusion of detail has been
whether or not I thought that it would assist the reader. In several places there
is some minor repetition of material; this is simply an acknowledgement that
most readers do not read (and authors do not write) books in the same order
as their pages are numbered and so, on occasions, it is helpful to some readers
to have this repetition. The greatest difficulty seemed to be in placing the
material in a coherent order, and to avoid constantly changing from one topic
to another as seems to happen so often in other accounts of the subject: I
believe that I have been reasonably successful in this but, ultimately, it is for
the reader to judge. I believe that important mathematical points should be
stressed (even when they are mathematically trivial), and I have written this
book in the belief that the onus lies with authors, not readers, to provide the
details.

There are references given in the text, but I have not attempted to include
references to all results, nor to trace the results back to the original source:
indeed, given some of the informal, expository (and sometimes incomplete)
accounts of the subject that exist, this would have sometimes been difficult,
although, of course, almost all of the results originate with Fatou and Julia.
There are no original illustrations in the text; the existing pictures are more
than adequate for my purposes and I am grateful for those who have allowed
me to use their illustrations.

In writing this text, I have had to learn the subject myself, and I have relied
heavily on the help, encouragement and advice of many people. Noel Baker
generously supplied me with notes for a course he gave, and as well as reading
the manuscript, has responded willingly to a stream of questions (not all
sensible) from me. Keith Carne has also read the manuscript, and has listened
patiently and responded to the ideas and difficulties I have had, and his inter-
est and support in this project has been most valuable. David Herron, Bruce
Palka, Cliff Earle, Kari Hag, Pekka Koskela and Shanshuang Yang partici-
pated in a seminar which worked through a large portion of the manuscript
and their comments and suggestions have led to a significant improvement in
the text. Norbert Steinmetz provided one of the ideas in Chapter 7, and Fred
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Gehring, as before, has been a great support. To all these people, and others
who have helped in various ways, I offer my thanks. Of course, I take full
responsibility for any errors that remain.

Cambridge, England Alan F. Beardon
November 1990



Prerequisites

This section contains notation, terminology and some of the results that are
taken for granted in the text. First, the notation. The real line, the complex
plane and the extended complex plane are denoted by R, C and C,, respec-
tively, and throughout the text, A denotes the unit disc in C. For any set A, the
closure, the boundary and the interior of A (all with respect to some underly-
ing space X which will be clear from the context) are 4, 84 and Int(A4), or 4°,
respectively. For sets 4 and B, 4 — B denotes the set difference (rather than
A\B which I find visually unattractive); thus

A—B={xeA:x¢Bj},

and the complement of 4 in X is X — A.

The symbol — defines a function f (for example, x — x?) as well as, of
course, f(x) = x2. Often, visual clarity is improved if brackets are omitted, so
I use f(x) and fx interchangeably. Likewise, if the composition x — f(g(x)) is
defined, it is denoted by fg. These liberties allow one to inject a particular
emphasis into a formula; for example, f(gx) is to be thought of as the f-image
of g(x), while fg(x) (the same point) is the fg-image of x. The composition of
f with itself n times is the n-th iterate f” of f, and f° = I, the identity map.
As usual, both notations f”, f”, and f™ are used for the derivatives of f.

A small amount of complex analysis is taken for granted, roughly speaking
that which would be covered in a first (and conventional) course in the sub-
ject. For example, we shall assume familiarity with the Maximum Modulus
Theorem, Schwarz’s Lemma and Rouché’s Theorem. All of these results can
be found in, for example, [3]. We say that f is a d-fold map of V onto W if,
for every w in W, the equation f(z) = w has exactly d solutions in V (counting
multiple solutions by their multiplicity); for example, a polynomial of degree
d is a d-fold map of C onto itself. If d = 1 we say the map is univalent, and at
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various points in the text we shall use Hurwitz’s Theorem (that if a sequence
univalent analytic maps f, converge uniformly to f on a domain D, then f is
either constant or univalent in D). This too can be found in [3].

Finally, we shall assume familiarity with the very basic ideas of metric
spaces, namely those up to, say, uniform continuity, compactness and con-
nectedness. We stress, however, that the material in Chapter 1 needs none of
these ideas, and that some attempt has been made to match progression
through the text with an assumption of increasing mathematical maturity.
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CHAPTER 1

Examples

In this chapter we introduce some of the main ideas in iteration theory by
discussing a variety of simple examples. The discussions involve only ele-
mentary mathematics, and our sole objective is to illustrate and stress those
features that will be met in a general context later.

§1.1. Introduction

This book is about the repeated application, or iteration, of a rational func-
tion,
_agta;z+-+a,z"

R =
@) by + bz + - + b,z™

of a complex variable z. Specifically, we select a starting point z, in the com-
plex plane C and then apply R repeatedly constructing, in turn, the points

Zg, 21 = R(2¢), 2, = R(z4), ... .

In general, we denote the composition of two functions f and g by juxtaposi-
tion so fg is the function z — f(g(z)), and we allow ourselves to write either
f9(z) or f(gz) depending on which of these we wish to emphasize. With this
notation, z, = R"(z,), and by convention, R® = I, where I is the identity map.
Many questions now present themselves; for example, does the sequence
z, converge, or, better still, for which values of the initial point z, does the
sequence z, converge? If the sequence z, does not converge, can we say any-
thing else about its behaviour and, in any case, how robust are the answers
to these questions under a small change in the initial point z,? Instead of
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looking at the future progress of z,, we can also look at its history as repre-
sented, say, by the sequence

vessZ_3s Z_ 35 20>

where again z,,, = R(z,). In general, for a given z, there will be several differ-
ent possibilities for z_;, even more for z_,, and so on, so here there is a case
for considering the totality of such sequences arising from a given point z.

We can gain a little insight immediately by making some elementary obser-
vations about fixed points. A point { is a fixed point of R if R({) = {, and it is
clear that such points must have a special role to play in the theory. Suppose
now that for some choice of z,, the sequence z, converges to w. Then (because
R is continuous at w)

w= lim z,,, = lim R(z,) = R(lim z,,) = R(w),

n—oo n—wo n—aoo

so w is a fixed point of R: thus if z, — w, then R(w) = w. For example, if
R(z) =z%> — 4z + 6, (1.1.1)

then, regardless of the choice of z,, if the sequence z, converges it can only
converge to 2, 3 or oo (we will discuss oo later). As

R(z)—2 =(z — 2,

the reader can now find those z, for which z, — 2.
If the fixed point { of R lies in C, then the derivative R’({) is defined and
we say that  is:

(1) an attracting fixed point if |R'({)| < 1;
(2) a repelling fixed point if |R'({)| > 1; and
(3) an indifferent fixed point if |R'({)| = 1.

This classification will be discussed again in much greater detail in Chapter
6, but it will be helpful to make some preliminary remarks now. If z is close
to the fixed point {, then, approximately,

IR(z) — | = |R(z) — RQQ)| = |R'(OI.|z — I,

so points close to an attracting fixed point move even closer to it when we
apply R, while points close to a repelling fixed point tend to move away from
it. In particular, if z, lies sufficiently close to an attracting fixed point {, then
z,— ( as n— oo. On the other hand, if z is close to (but not equal to) a
repelling fixed point {, initially it is repelled away from {, but it may return to
the vicinity of { (or even to ( itself) at a later stage. In fact, the only way that
z, can converge to a repelling fixed point {, is to have z, = { for n > n,, say.
To see this, we suppose that z, — {, where z, # ( for any n, and seek a contra-
diction. Certainly, the fact that the z, converge to, but are distinct from, {
implies that for infinitely many n,

Izn+l - CI < 'Zn - CI'



