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Preface

This book is intended to provide an introduction to remarkable probabil-
ity limit theorems in random matrices and random partitions, which look
rather different at a glance but have many surprising similarities from a
probabilistic viewpoint.

Both random matrices and random partitions play a ubiquitous role in
mathematics and its applications. There have been a great deal of research
activities around them, and an enormous exciting advancement had been
seen in the last three decades. A couple of excellent and big books have
come out in recent years. However, the work on these two objects are so rich
and colourful in theoretic results, practical applications and research tech-
niques. No one book is able to cover all existing materials. Needless to say,
these are rapidly developing and ever-green research fields. Only recently, a
number of new interesting works emerged in literature. For instance, based
on Johansson’s work on deformed Gaussian unitary ensembles, two groups
led respectively by Erdos-Yau and Tao-Vu successfully solved, around 2010,
the long-standing conjecture of Dyson-Gaudin-Mehta-Wigner’s bulk univer-
sality in random matrices by developing new techniques like the compar-
ison principles and rigidity properties. Another example is that with the
help of concepts of determinantal point processes coined by Borodin and
Olshanski, around 2000, in the study of symmetric groups and random
partitions, a big breakthrough has been made in understanding universal-
ity properties of random growth processes. Each of them is worthy of a
new book.

This book is mainly concerned with normal convergence, namely central
limit theorems, of various statistics from random matrices and random par-
titions as the model size tends to infinity. For the sake of writing and learn-
ing, we shall only focus on the simplest models among which are circular
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viii Random Matrices and Random Partitions

unitary ensemble, Gaussian unitary ensemble, random uniform partitions
and random Plancherel partitions. As a matter of fact, many of the results
addressed in this book are found valid for more general models. This book
consists of three parts as follows.

We shall first give a brief survey on normal convergence in Chapter 1.
It includes the well-known laws of large numbers and central limit theo-
rems for independent identically distributed random variables and a few
methods widely used in dealing with normal convergence. In fact, the cen-
tral limit theorems are arguably regarded as one of the most important
universality principles in describing laws of random phenomena. Most of
the materials can be found in any standard probability theory at graduate
level. Because neither the eigenvalues of a random matrix with all entries
independent nor the parts of random partitions are independent of each
other, we need new tools to treat statistics of dependent random variables.
Taking this into account, we shall simply review the central limit theo-
rems for martingale difference sequences and Markov chains. Besides, we
shall review some basic concepts and properties of convergence of random
processes. The statistic of interest is sometimes a functional of certain ran-
dom process in the study of random matrices and random partitions. We
will be able to make use of functional central limit theorems if the ran-
dom processes under consideration is weakly convergent. Even under the
stochastic equicontinuity condition, a slightly weaker condition than uni-
form tightness, the Gikhmann-Skorohod theorem can be used to guarantee
convergence in distribution for a wide class of integral functionals.

In Chapters 2 and 3 we shall treat circular unitary ensemble and Gaus-
sian unitary ensemble respectively. A common feature is that there exists
an explicit joint probability density function for eigenvalues of each matrix
model. This is a classic result due to Weyl as early as the 1930s. Such an
explicit formula is our starting point and this makes delicate analysis pos-
sible. Our focus is upon the second-order fluctuation, namely asymptotic
distribution of a certain class of linear functional statistics of eigenvalues.
Under some smooth conditions, a linear eigenvalue statistic satisfies the
central limit theorem without normalizing constant \/n, which appears in
classic Lévy-Feller central limit theorem for independent identically dis-
tributed random variables. On the other hand, either indicator function
or logarithm function does not satisfy the so-called smooth condition. It
turns out that the number of eigenvalues in an interval and the logarithm
of characteristic polynomials do still satisfy the central limit theorem after
suitably normalized by /logn. The logn-phenomena is worthy of more
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attention since it will also appear in the study of other similar models. In
addition to circular and Gaussian unitary ensembles, we shall consider their
extensions like circular 8 matrices and Hermite S matrices where 8 > 0 is a
model parameter. These models were introduced and studied at length by
Dyson in the early 1960s to investigate energy level behaviors in complex
dynamic systems. A remarkable contribution at this direction is that there
is a five (resp. three) diagonal sparse matrix model representing circular j3
ensemble (resp. Hermite S ensemble).

In Chapters 4 and 5 we shall deal with random uniform partitions and
random Plancherel partitions. The study of integer partitions dates back
to Euler as early as the 1750s, who laid the foundation of partition theory
by determining the number of all distinct partitions of a natural number.
We will naturally produce a probability space by assigning a probability
to each partition of a natural number. Uniform measure and Plancherel
measure are two best-studied objects. Young diagram and Young tableau
are effective geometric representation in analyzing algebraic, combinatorial
and probabilistic properties of a partition. Particularly interesting, there
exists a nonrandom limit shape (curve) for suitably scaled Young diagrams
under both uniform and Plancherel measure. This is a kind of weak law
of large numbers from the probabilistic viewpoint. To proceed, we shall
further investigate the second-order fluctuation of a random Young diagram
around its limit shape. We need to treat separately three different cases:
at the edge, in the bulk and integrated. It is remarkable that Gumbel
law, normal law and Tracy-Widom law can be simultaneously found in
the study of random integer partitions. A basic strategy of analysis is
to construct a larger probability space (grand ensemble) and to use the
conditioning argument. Through enlarging probability space, we luckily
produce a family of independent geometric random variables and a family
of determinantal point processes respectively. Then a lot of well-known
techniques and results are applicable.

Random matrices and random partitions are at the interface of many
science branches and they are fast-growing research fields. It is a formidable
and confusing task for a new learner to access the research literature,
to acquaint with terminologies, to understand theorems and techniques.
Throughout the book, I try to state and prove each theorem using lan-
guage and ways of reasoning from standard probability theory. 1 hope
it will be found suitable for graduate students in mathematics or related
sciences who master probability theory at graduate level and those with
interest in these fields. The choice of results and references is to a large



X Random Matrices and Random Partitions

extent subjective and determined by my personal point of view and taste
of research. The references at the end of the book are far from exhaustive
and in fact are rather limited. There is no claim for completeness.

This book started as a lecture note used in seminars on random matrices
and random partitions for graduate students in the Zhejiang University over
these years. I would like to thank all participants for their attendance and
comments. This book is a by-product of my research project. I am grateful
to the National Science Foundation of China and Zhejiang Province for
their generous support in the past ten years. I also take this opportunity
to express a particular gratitude to my teachers, past and present, for
introducing me to the joy of mathematics. Last, but not least, I wish to
thank deeply my family for their kindness and love which is indispensable
in completing this project.

I apologize for all the omissions and errors, and invite the readers to
report any remarks, mistakes and misprints.

Zhonggen Su
Hangzhou
December 201/
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Chapter 1

Normal Convergence

1.1 Classical central limit theorems

Throughout the book, unless otherwise specified, we assume that (2, .4, P)
is a large enough probability space to support all random variables of study.
E will denote mathematical expectation with respect to P.

Let us begin with Bernoulli’s law, which is widely recognized as the
first mathematical theorem in the history of probability theory. In modern
terminology, the Bernoulli law reads as follows. Assume that &,,n > 1
is a sequence of independent and identically distributed (i.i.d.) random
variables, P(§, = 1) = p and P(§, =0) =1 — p, where 0 < p < 1. Denote
Spn = 4_1 k- Then we have

S, P

— —p, n— oo. (1.1)
n

In other words, for any £ > 0,
Sn
P(’g—p‘ >E) — 0, n— oo.

It is this law that first provide a mathematically rigorous interpretation
about the meaning of probability p that an event A occurs in a random
experiment. To get a feeling of the true value p (unknown), what we need
to do is to repeat independently a trial n times (n large enough) and to
count the number of A occurring. According to the law, the larger n is, the
higher the precision is.

Having the Bernoulli law, it is natural to ask how accurate the frequency
S, /n can approximate the probability p, how many times one should repeat
the trial to attain the specified precision, that is, how big n should be.

With this problem in mind, De Moivre considered the case p = 1/2 and
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proved the following statement:

S, — & 1 b 2
Pla< = —2<p) =~ —/ e~ 12z, 1.2
( B %\/ﬁ ) V2 Ja (1.2)

Later on, Laplace further extended the work of De Moivre to the case
p # 1/2 to obtain

INA

b
P(a < _Sn M < b) s L/ e = 2y, (1.3)
vnp(l —p) V2r Ja
Formulas (1.2) and (1.3) are now known as De Moivre-Laplace central limit
theorem (CLT).
Note ES,, = np, Var(S,) = np(1 —p). So (S, —np)/+/np(l —p) is
a normalized random variable with mean zero and variance one. Denote
é(z) = e=**/2/\/2m, & € R. This is a very nice function from the viewpoint
of function analysis. It is sometimes called bell curve since its graph looks
like a bell, as shown in Figure 1.1.

y

\j
51

Fig. 1.1 Bell curve

The Bernoulli law and De Moivre-Laplace CLT have become an indis-
pensable part of our modern daily life. See Billingsley (1999a, b), Chow
(2003), Chung (2000), Durrett (2010) and Fischer (2011) for a history of
the central limit theorem and the link to modern probability theory. But
what is the proof? Any trick? Let us turn to De Moivre’s original proof of
(1.2). To control the left hand side of (1.2), De Moivre used the binomial

formula
n\ 1
P(S, =k) = —
s =0=(})5
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and invented together with Stirling the well-known Stirling formula (it ac-
tually should be called De Moivre-Stirling formula)

n! = n"e""V2mn(1 + o(1)).

Setting k = n/2 + \/nwi /2, where a < z; < b, we have

P(S" =5 _ l'k) _ 1 n"e ™/2mn(1 + o(1))
svn 2" kke—k(n — k)n—ke—(n=k)\/2xk\/2n(n — k)
1

= —%6_12’:’/2(1 + 0(1))

Taking sum over k yields the integral of the right hand side of (1.2).

Given a random variable X, denote its distribution function Fx (z) un-
der P. Let X, X,,, n > 1 be a sequence of random variables. If for each
continuity point = of Fx,

Fx (z) = Fx(z), n — oo,

then we say X,, converges in distribution to X, and simply write X, L X,
In this terminology, (1.3) is written as
Sn — np
np(1 — p)
where N (0, 1) stands for a standard normal random variable.

As the reader may notice, the Bernoulli law only deals with frequency
and probability, i.e., Bernoulli random variables. However, in practice peo-
ple are faced with a lot of general random variables. For instance, measure
length of a metal rod. Its length, g, is intrinsic and unknown. How do
we get to know the value of 7 Each measurement is only a realization of
Ji. Suppose that we measure repeatedly the metal rod n times and record
the observed values &, &, -+, &,. It is believed that 22:1 &k /n give us
a good feeling of how long the rod is. It turns out that a claim similar to
the Bernoulli law is also valid for general cases. Precisely speaking, assume
that £ is a random variable with mean u. &,, n > 1 is a sequence of i.i.d.
copy of £&. Let S,, = > _, &. Then

Sn N My, M — 00. (1.4)

45 N(0,1), n— o0,

n

This is called the Khinchine law of large numbers. It is as important as the

Bernoulli law. As a matter of fact, it provides a solid theoretic support for
a great deal of activity in daily life and scientific research.

The proof of (1.4) is completely different from that of (1.1) since we do

not know the exact distribution of &. To prove (1.4), we need to invoke
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the following Chebyshev inequality. If X is a random variable with finite

mean p and variance o2, then for any positive > 0

2

ag
P(X —ul >2) < Z.

In general, we have
Ef(X)

fz)”
where f : R — R is a nonnegative nondecreasing function. We remark that
the Chebyshev inequalities have played a fundamental role in proving limit
theorems like the law of large numbers.

Having (1.4), we next naturally wonder what the second order fluctua-
tion is of S,,/n around x? In other words, is there a normalizing constant
an, — oo such that a, (S, — nu)/n converges in distribution to a certain
random variable? What is the distribution of the limit variable? To attack
these problems, we need to develop new tools and techniques since the De
Moivre argument using binomial distribution is no longer applicable.

Given a random variable X with distribution function Fy, define for
every t € R,

PX >z) <

'wX (t) _ EeitX
=/€imde(I).
R

Call 9 x (t) the characteristic function of X. This is a Fourier transform of
Fx (x). In particular, if X has a probability density function px (), then

Px(t) :/]Reimpx(x)da:;

while if X takes only finitely or countably many values, P(X = xy) = px,
k > 1, then

oo
dx(t) = " py.
k=1
Note the characteristic function of any random variable is always well de-
fined no matter whether its expectation exists.

Example 1.1. (i) If X is a normal random variable with mean p and
: 2
variance o2, then ¥ () = et=7"t*/2;

(ii) If X is a Poisson random variable with parameter ), then ¥ x(t) =
Ae't—1)
e

7

(iii) If X is a standard Cauchy random variable, then ¢ (t) = e~



