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PREFACE

THE purpose of this book is to provide a detailed but simple development of
the general formalism required to describe the polarization of particles of
arbitrary spin and their decay into or interaction with other particles. The
book evolved out of two series of lectures given at the Australian National
University, Canberra, mainly to post-graduate students and research work-
ers in the field of nuclear physics. There appeared to be a definite need for a
book devoted entirely to the theory of polarization phenomena. While many
books of a more general nature contain some discussion of the polarization
of particles, in most cases the treatment is too superficial and inadequate. On
the other hand the specialist papers and review articles tend to lack sufficient
introduction to the subject for the average research worker to grasp the
underlying physics of the often quite complicated theoretical formalism.

In this book I have tried to show the unity and logical development of the
subject from the initial discovery of the polarization of light. In particular I
have given considerable emphasis to the method developed by Stokes,
Soleillet, Perrin, and Mueller in classical optics now known as the Mueller
calculus. This approach, which offers considerable simplicity and clarity
both for designing polarization experiments and for understanding the
resultant polarization measurements, has been almost completely ignored
outside of optics. I hope that the present book will rectify this situation.

The book is intended to be read from the beginning to the end. It has been
written at the level of a graduate physics course and assumes a basic
knowledge of quantum theory, scattering theory, and matrix algebra. It
should be useful to research workers in all branches of physics (opfics,
atomic, nuclear, particle, etc.) who study polarization effects.

The book is essentially pure theory with no experimental results being
discussed. Thus no attempt has been made to consider all polarization
phenomena; only a few simple examples (mostly from my own field of
nuclear physics) are presented in order to illustrate the theoretical for-
malism.

As far as possible I have adopted the Madison convention for specifying
polarization quantities. Unfortunately, this convention is not consistent with
the logical definition of the analysing powers for the scattering of a polarized
incident beam in the spherical tensor representation. For this reason I have
denoted the Mueller matrix by Z rather than T. The Madison convention
does notinclude quantities such as polarization transfer and spin-correlation
coefficients. 1 hope that the notation and definition of these quantities
adopted in this book will find ready acceptance by research workers.
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I have taken particular care to differentiate between quantities which
specify the polarization of a beam of particles and quantities which specify
the interaction of such particles with a target. Thus I have introduced the
quantity ‘vector scattering parameter’ for the elastic scattering of spin-}
particles by a spinless target. Although this quantity is sometimes numerical-
ly equal to the vector polarization of the scattered beam, it is confusing to
identify the two quantities too closely.

I wish to express my gratitude to Dr. N. Berovic who read almost all of the
manuscript and gave me very valuable criticism and advice. I am also
indebted to many colleagues for discussions and comments on the manus-
cript and Mrs. I. Kinchin for preparing most of the final manuscriptinsucha
cheerful and competent manner.

I am grateful to Profs. W. E. Burcham and F. Beck for hospitality at the
University of Birmingham and the Institut fiir Kernphysik, Darmstadt,
respectively, where considerable portions of the book were written. I also
thank Prof. K. J. LeCouteur for encouragement to commence such a
project.

B.A.R.

The Australian National University, Canberra
July 1974
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INTRODUCTION

THE observation by Bartholinus in 1669 of the double refraction of light by
calcite led to the discovery of the polarization of light by Huygens c. 1690.
Huygens found that light which had passed through a piece of calcite be-
haved differently from ordinary light. However, although he was able to
describe the phenomenon of double refraction in terms of his wave construc-
tion, he was unable to account for the polarization of light. This was not
achieved until c. 1817 when Young suggested that light waves are transverse
rather than longitudinal vibrations (Fresnel claimed to have mentioned this
possibility to Ampeére in 1816). In 1824 Fresnel showed that light waves are
exclusively transverse and the resultant transverse vector theory constituted
the first theory of polarized light. This was eventually superseded by the more
general electromagnetic theory of Maxwell in 1864.

The term polarization was first used by Malus in 1810 when describing the
production of polarized light by reflection and was derived from the word
‘polarity’ employed much earlier to describe the two-sidedness or two-fold
nature of magnetic poles. Malus, while keeping an open mind on the wave-
versus-corpuscular theories of light, employed the latter model and con-
sidered that the polarization of light was connected with the polarity of the
corpuscles. In this sense the word polarization is a misnomer but the term
has such a long history that there can be no question of a replacement for it.
Unfortunately, polarization has also been used to describe other effects,
e.g. in Maxwell’s displacement vector D = E+47P. Here E is the electric
vector and the polarization vector P is a measure of the mean polarizability
of a dielectric medium. We do not consider such phenomena in this treatise.

The next polarization phenomena to be observed and described were
essentially the Zeeman effect and the doublet spectral lines of the alkali
elements. In 1896 Zeeman discovered that certain spectral lines are split into
a number of components on the application of an external magnetic field.
The classical theory of Lorentz indicated the splitting of lines into three
components (the normal Zeeman effect) and indeed in some cases is able
to account for the measurements. However, in many instances there occur
more than three components—the so-called anomalous Zeeman effect. For
the explanation of this latter phenomenon and the alkali doublet structure,
it was necessary to assume that the electron possesses an intrinsic angular
momentum called spin, which by analogy with the quantization of orbital
angular momentum gives rise to just two basic states, i.e. electrons are spin-1
particles. The spin of the electron gives rise to a small splitting of the majority
of alkali atomic energy levels and the corresponding occurrence of doublet
spectral lines. Associated with the spin angular momentum is a magnetic
moment which accounts for the anomalous Zeeman effect.
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Since 1925, when the concepts of electron spin and magnetic moment were
published, each particle or system of particles (e.g. deuteron) is considered to
possess a spin s which has a unique value from the set 0,4, 1,3, ... . Thus pions
and alpha particles have s = 0, electrons and protons have s = 1, photons
and deuterons have s = 1, etc. All particles with s > 0 exhibit polarization
phenomena, i.e. effects which arise as a direct consequence of their intrinsic
spin. This book deals only with the description of such polarization
phenomena.

For several reasons we discuss polarized light first (Chapter 1). Since the
polarization of light was studied for over two hundred years before any other
polarization phenomenon, much of the terminology of polarization theory
is derived from optics. Secondly, polarized light offers simple and convenient
examples with which to introduce the various formalisms. Moreover, this
can be done using a classical approach which at a later stage and as a separate
step may be simply re-interpreted in a quantum-theory treatment (Chapter 2).
The two main approaches now employed in optics for describing the inter-
action of polarized light with optical devices are the Jones and Mueller
calculi, which were invented in the early 1940s. Both these matrix methods
are conveniently introduced by considering the passage of polarized light
through two simple optical instruments, the ‘stopped’ calcite crystal (or its
equivalent the Nicol prism) and the quarter-wave plate, which have compara-
tively trivial matrix representations. Furthermore, from their study of classical
optics, many readers undoubtedly will be familiar with the properties of
these devices as well as the different forms of polarized light. Finally, the
photon concept played a leading role in the development of quantum theory
and presents a convenient stepping stone for the transition to a general
description of polarized particles.

The two calculi employed in classical optics have their counterparts in the
description of the polarization of particles of arbitrary spin and their decay
or interaction with other particles. Indeed rather earlier than 1940, the
equivalent of the Jones calculus, namely, the use of spin wave functions and
scattering (or reaction) matrices was introduced into particle physics by
Pauli in 1927 and Wheeler in 1937, respectively. The extension of the Jones
calculus to include partially polarized light requires the use of the density
matrix proposed by von Neumann in 1927. On the other hand, the Mueller
method has scarcely been employed for particles. However, it is the author’s
belief that this complementary approach offers considerable simplicity com-
pared with the usual description based upon density and reaction matrices.
Both methods and the relationship between them are discussed in detail
(Chapters 3-6).

In Chapters 3 and 4 we discuss in depth the complete specification of the
polarization of spin-} and spin-1 particles, respectively. Emphasis is also
given to spin-1 particles since they exhibit fundamental differences from the
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simplest case of spin-4 particles which are typical of higher spin particles. Our
over-all approach is to proceed by analogy and induction from the simpler
to the more complicated phenomena rather than to commence with a general
formalism. This necessitates some repetition, but the author believes that
this gradual development of the theory is more understandable. Thus only the
simplest reaction, elastic scattering from spinless targets, is considered at
this stage. The general forms of the elastic scattering matrices under certain
invariance requirements (e.g. parity conservation) and the corresponding
numbers of independent observable quantities are discussed. Throughout
we employ a notation to denote reference axes which is becoming more
essential as the trend now is to refer initial and final spin states to different
coordinate frames. We use a set of ‘standard’ axes which correspond to the
helicity coordinate systems of Ohlsen (1972).

In Chapter 5 we present the general non-relativistic formalism for particles
of arbitrary spin interacting with targets with spin. Both non-elastic reactions
and processes involving identical particles are discussed. The formalism is
then extended to the emission and absorption of electromagnetic radiation
(Chapter 6). The concepts of decay and absorption matrices are introduced
and it is believed that the treatment of angular correlations presented here is
both novel and simpler than previous descriptions.

Finally we include a short chapter on the treatment of relativistic particles.
We follow the approach of Chou and Shirokov (1958) which represents (at
least to the author) the only correct explicit treatment of the spin precession
for an arbitrary proper Lorentz transformation. We indicate how this
relativistic rotation of the spin may be easily incorporated into the non-
relativistic formalism. We also show the relation of our formalism to the
helicity representation of Jacob and Wick (1959). For various reasons we
have not adopted the helicity formalism from the outset but in the case of
particles with mass this is shown to be no disadvantage for the standard axes
chosen. The case of massless particles is also considered.






1
POLARIZED LIGHT

1.1. Calcite crystal experiment

CALCITE is a rhombohedral crystalline form of calcium carbonate in which
the double refraction of light is very strikingly exhibited. In a perfectly formed
crystal (Fig. 1.1) the rhombohedron is bounded by six similar parallelograms
the obtuse angles of which are about 101° 55'. The solid angles at the corners
A and G are contained by three obtuse angles while the remainder are
bounded by one obtuse and two acute angles. The plane ACGE and the line
AG are called the principal plane and the principal axis respectively. A
calcite crystal is said to be uniaxial since there is one special direction called
the optic axis in which only single refraction occurs. For calcite the optic
axis coincides with the direction of the principal symmetry axis AG.

N AT
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G

FiG. 1.1. Perfectly formed calcite crystal with principal plane ACGE and principal (optic)
axis AG.

When a beam of ordinary light is passed through a slab of calcite crystal
each ray is generally divided into two, an ordinary (O) ray which obeys the
usual law of refraction and a so-called extraordinary (E) ray which does not.
This phenomenon is undoubtedly related to the crystalline structure of
calcite since substances such as glass which have an irregular structure do
not exhibit such an effect. For convenience let us assume that the incident
direction is not too close to the optic axis and is both normal to the crystal
face and in a principal plane, i.e. in a direction parallel to the principal plane
(Fig. 1.2). The O-ray passes straight through while the E-ray is deflected
along a principal plane and emerges parallel to the incident ray. Thus a
rotation of slab 1 about the incident direction causes an equal rotation of the
E-ray about the same direction. When these two rays strike the face of slab 2
and provided both crystals have identical orientation of their optic axes, the
O-ray continues undeflected while the E-ray is further displaced. This shows
that light which has traversed a calcite crystal is different from ordinary light.
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The light is said to be polarized and unpolarized respectively. Furthermore,
the O- and E-rays are different so that light can exist in at least two different
polarized states. However, it is necessary to be careful here ; one should not
visualize light as an incoherent mixture of two kinds X and Y, which are
separated by the calcite slab so that the O-ray consists of type X and the E-ray
of type Y. If this were so, it would not be possible to obtain a further separa-
tion in the second crystal as does in fact occur if the orientations of the optic
axes are different (Fig. 1.3). In this case the calcite slab transforms the set of
states [X, Y] into other polarization states [1, 2, 3, 4] depending upon its
orientation a.

-

1 2

F1G. 1.2. Double refraction of ordinary (unpolarized) light by two successive calcite crystals
having the same orientation of optic axes. Both the ordinary (O) and extraordinary (E) rays are
polarized. All rays are in the plane of the page.

» X 1 > »
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F1G. 1.3. Double refraction of ordinary (unpolarized) light by three successive calcite crystals
with crystals 2 and 3 having the same orientation of optic axes. The X and Y rays each separate
into two components in crystal 2. Rays 1 and 3 (and likewise rays 2 and 4) behave similarly on
passing crystal 3. Rays 2 and 4 represented by broken lines are not in the plane of the page.

If the four rays are passed through a third calcite crystal which has its
optic axis in the same direction as the second crystal, it is found that rays 1
and 3 behave similarly and also that rays 2 and 4 are alike. Thus there are
only two types of polarization states again. Indeed, the interaction of light
with all types of optical devices can be satisfactorily described in terms of
just two states of polarization. It is therefore possible to write the effect of a
calcite crystal upon polarized light as

[X,Y] = T@[X.Y] (L.1)
which means that the polarization states X, Y are transformed by the

operator T(x), which describes in some manner the orientation and action of
the crystal, into the polarization states X', Y'. This form of relationship
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immediately suggests that light cannot be a scalar quantity; it must have
components. The phenomenon of polarization shows that a satisfactory
theory of light has to be vectorial in character, i.e. be concerned with direc-
tions. It should be noted that if one starts with ordinary light two calcite
crystals are required to observe the polarization effect, the first to polarize
the light and the second to analyse it. One speaks of a polarizer and an
analyser respectively and of course a polarizer can act as an analyser and
vice versa.

1.2. Electromagnetic theory of light

The electromagnetic theory represents light in free space as transverse
vibrations of electric and magnetic fields E, H which are mutually perpendicu-
lar and in phase. For the purposes of the discussion here, it is only necessary
to consider one of the vectors, say E, since the vectors are related to each
other in terms of simple constants so that H can be derived from E.

The two rays of light transmitted by a calcite crystal are both linearly
polarized, i.e. the electric vectors representing the rays have fixed directions
so that each vibration takes place in a single plane containing the direction
of propagation. Moreover, these two directions are at right angles to one
another. It has been found that the polarization of light can be understood in
terms of the superposition of two such rays; a given polarized ray of light
may be represented as the resultant of two disturbances, one with the E-
vector in the xz-plane and the other with the E-vector in the yz-plane and
both travelling along the z-axis. We can write

E=Ee.+Ege,, (1.2)
where
E, = acos(kz—wt) = acos ¢, (1.3)
and
E, = bcos(kz—wt+0) = bcos(¢+9). (1.4)

Here e,, e, are unit vectors along the x-, y-axes, w is the angular frequency,
and k is the wave number. The two component vibrations have the same
frequency and velocity of propagation but their amplitudes differ and there
is a permanent phase difference J. In general, the tip of the E-vector will
appear to trace out an ellipse (the polarization ellipse) when viewed along
the direction in which the light propagates, and consequently a polarized
ray of light is said to be elliptically polarized. If the E-vector rotates around
the ellipse in a clockwise (anti-clockwise) direction when viewed by an
observer who receives the beam of light, the ray is said to be right-handed
(left-handed) elliptically polarized light. There are two special cases: (1) if
a=bandd = Imn(m = +1, +£3, +5,...) the ellipse becomes a circle and the
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light is called right-handed and left-handed circularly polarized light respec-
tively; (2) if 6 = mn (m = 0, +1, +2,..) the ellipse degenerates to a straight
line (the polarization line) and the light is linearly polarized.

1.3. Stokes parameters

To specify the polarization ellipse we require three independent quanti-
ties, e.g. the amplitudes a and b and the phase difference 6. For practical pur-
poses it is convenient to characterize the state of polarization by certain
parameters which are all of the same physical dimensions and which were
introduced by Stokes (1852). For a plane monochromatic wave the Stokes
parameters are the four quantities:

I = a*>+b?, P, = a*—b?, P, = 2ab cos 6, P, = 2absind. (1.5)
Only three of these quantities are independent since
I? = P}+ P} +P;. (1.6)

The Stokes parameters are useful because they (1) can be determined by
simple experiments, (2) allow treatment of unpolarized and partially polarized
beams of light, and (3) may be re-interpreted in terms of the quantum theory
of light. The parameter I is a measure of the time-averaged intensity of the
wave, the average being taken over a period long enough to allow adequate
measurement but very long indeed compared with the natural period
w ~ 10715 s ! of the wave. The parameters P,, P,, and P, can be expressed
in terms of quantities which describe the polarization ellipse, { the angle
between the major axis and the x-axis, and y = tan~!(+ B/A4), —in < 3 <
in, where A4 and B are the lengths of the major and minor semi-axes (Fig. 1.4).
The quantity tan y is defined to have the same sign as sin ¢ and is positive

ty
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FiG. 1.4. Polarization ellipse for electric vector E = a cos ¢e +b cos(¢ +d)e,. The major and
minor semi-axes have lengths A and B, respectively; ¢ is the angle between the major axis and
the x-axis.
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(negative) for right-handed (left-handed) polarization. We have

P, = I cos2ycos 2y, (1.7a)
P, = I cos 2y sin 2y, (1.7b)
Py = Isin 2y. (1.7¢)

These relationships bear a close resemblance to the formulae for the three
components of a vector expressed in spherical coordinates and indicate a
simple geometrical representation of all the different states of polarization.
This representation is known as the Poincaré sphere (Poincaré 1892).

The Poincaré sphere X is a sphere of radius I (Fig. 1.5) such that any
point P on the surface having spherical angular coordinates (37 —2y) and
2y represents one and only one state of polarization of a plane mono-
chromatic wave. The reverse is also true ; each point on the surface X uniquely
defines one state of polarization. In particular:

(1) all points ‘north’ (‘south’) of the equator represent states of right-handed
(left-handed) polarization ;

(2) the north (south) pole represents right-handed (left-handed) circular
polarization ;

(3) the equator represents all states of linear polarization.

FiG. 1.5. Poincaré sphere (X) representation of all polarization states of a plane monochromatic
wave. The polarization vector P = (P, P,. P,) has length I and polar angles (37— 2y), 2i.

1.4. Modern theories of polarized light

The description of the interaction of polarized light with several optical
devices using conventional algebraic and trigonometric methods is a very
difficult and cumbersome process. Two ‘modern’ methods which greatly
simplify the description are the Jones and Mueller calculi. Both methods use



